• Title/Summary/Keyword: Fine motor

Search Result 175, Processing Time 0.03 seconds

Comparison Before and After the Application of the Computerized Cognitive Rehabilitation Program(CoTras-C) for Children with Cerebral Palsy (뇌병변 장애 아동의 아동용 전산화 인지재활 프로그램(CoTras-C) 사용 전·후 비교)

  • Park, So-Won
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.3
    • /
    • pp.9-18
    • /
    • 2021
  • Purpose : In this study, we applied a computerized cognitive rehabilitation program (CoTras-C) for children with cerebral palsy. Research was conducted to investigate the impact of upper limb function, sensory function, and activities of daily living. Methods : The study period lasted 10 weeks from October 2019 to December 2019. The study subjects were 12 subjects according to the selection criteria, and a computerized cognitive rehabilitation program (CoTras-C) was conducted twice a week for 30 minutes before and after the application of basic occupational therapy. Results : As a result of the computerized cognitive rehabilitation program, scores of upper limb function (QUEST), sensory function (SSP-2), and daily life activity (WeeFIM) were significantly improved (p>.05). From the result of examining the motor area, improvement in fine-motor function and protective extension through touch pad or controller operation was found. It also showed improvement in activities of daily living including motor and activities of daily living including social cognition. In the sensory function evaluation, it was not significant in movement sensitivity. Significant differences were shown in the items excluding olfactory/taste sensitivity. Conclusion : The application of the computerized cognitive rehabilitation program (CoTras-C) showed significant results in upper limb function, sensory function, and daily life activities of children with brain lesions. Based on these results, future studies need to generalize the study by expanding the age or population of children with brain lesions, or by expanding the diversity of diseases and environments.

Study on the Open-type Wearable Air Cleaner Design (개방형 웨어러블 공기청정기 디자인 연구)

  • Choi, Kyu-Han;Baek, Joon-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.12
    • /
    • pp.74-81
    • /
    • 2020
  • As of 2020, due to the influence of fine dust from China and domestic dust, the cloudy sky of Korea has become a daily routine not only in spring but also in autumn/winter. In 2013, the International Cancer Institute under the World Health Organization designated fine dust as a group 1 carcinogen that has been confirmed to be carcinogenic to humans. The purpose of this study is to theoretically review 5 fine dust-related design studies, by analyzing the case of three types of wearable air purifiers on the market, it is to propose an improved open wearable air purifier. As a verification method, a working prototype was produced to measure the amount of fine dust reduction. Therefore, this study derived three design insights of wearable air cleaner through case analysis. First, it maximizes openness by minimizing the area touching the face. Second, the nozzle where the air comes out should be close to the respiratory organ. Third, position of the motor is to be as far away as possible from the ear considering the noise. Based on this, I suggested an open-type wearable air purifier design that maximizes the user openness and improves the wearing comfort. I hope that it will be an opportunity to increase the coverage of wearable air cleaner and protect the respiratory health of users.

Nanoscale Dynamics, Stochastic Modeling, and Multivariable Control of a Planar Magnetic Levitator

  • Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • This paper presents a high-precision magnetically levitated (maglev) stage to meet demanding motion specifications in the next-generation precision manufacturing and nanotechnology. Characterization of dynamic behaviors of such a motion stage is a crucial task. In this paper, we address the issues related to the stochastic modeling of the stage including transfer function identification, and noise/disturbance analysis and prediction. Provided are test results on precision dynamics, such as fine settling, effect of optical table oscillation, and position ripple. To deal with the dynamic coupling in the platen, we designed and implemented a multivariable linear quadratic regulator, and performed time-optimal control. We demonstrated how the performance of the current maglev stage can be improved with these analyses and experimental results. The maglev stage operates with positioning noise of 5 nm rms in $\chi$ and y, acceleration capabilities in excess of 2g(20 $m/s^2$), and closed-loop crossover frequency of 100 Hz.

Design and Analysis of A Mini Linear Optical Pickup Actuator

  • Park, Joon-Hyuk;Baek, Yoon-Su;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1616-1627
    • /
    • 2003
  • This paper describes a mini linear optical pickup actuator. To reduce the size, inner yokes are designed to guide the mover and outer yokes of permanent magnets are removed. Magnetic circuit method is used to determine the thrust force. Virtual path method is proposed to analyze the open magnetic circuit analysis. The magnetic circuit of the proposed actuator can be a closed circuit due to the virtual path model of the outer magnetic flux. The validity of virtual path method is evaluated by comparing to the FEM analysis. Structural vibration is investigated using FEM and the design of the mover is modified to improve the vibration characteristic. Dynamic characteristic experiments shows that the performance of the proposed actuator is enough to be used as a coarse and fine seeking actuator simultaneously and the thrust force margin for loading a focusing actuator is guaranteed.

Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가)

  • 박기형;김재열;곽이구
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

Track following control of optical pick-up actuator using PZT (PZT를 이용한 광 정보저장기기용 엑츄에이터의 추적제어)

  • 이우철;양현석;박노철;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.664-669
    • /
    • 2003
  • This paper proposes a swing-arm type dual-stage actuator, which consists of a PZT actuator for fine motion and a VCM(Voice Coil Motor) for coarse motion, for SFF ODD(Small Form Factor Optical Disk Drive), in order to achieve fast access speed and precise track following control. We focus our attention on the design and control of the PZT actuator, because there have been a lot of previous researches related to the VCM and dual-stage actuators. Due to the dual cantilever structure, the PZT actuator can generate precise translational tracking motion at its tip where optical pickup is attached at, and the effect of hysteric behavior of the PZT element is reduced. The dynamic model of the PZT actuator is derived by using the Hamilton's principle, and verified by comparing with the experimental frequency response. The sliding mode control is designed in order to be robust against modeling uncertainties. Simulations and experimental results confirm the effectiveness of the suggested control scheme.

  • PDF

Evaluation of Microstructure and Mechanical Property of a Novel Ceramic Salt Core (세라믹 용융코어의 미세조직과 기계적 특성)

  • Lee, Jun-Ho;Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.4
    • /
    • pp.166-169
    • /
    • 2008
  • This study deals about the development of fusible core with low melting temperature by addition of ceramic particles. A new concept of salt core was introduced to produce an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. The mechanical properties of fusible core were improved due to the addition of ceramic particles which helped to produce fine microstructure. The new technology for the preparation of new fusible core materials which possess high compression strength was established. Addition of ceramics particles increased the mechanical properties of fusible core materials. There was an increasing relationship between percentage of ceramic particles and mechanical strength was existed up to 60%.

DEVELOPMENT OF INTELLIGENT POWER UNIT FOR HYBRID FOUR-DOOR SEDAN

  • Aitaka, K.;Hosoda, M.;Nomura, T.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2003
  • The Intelligent Power Unit (IPU) utilized in Honda's Civic Hybrid Integrated Motor Assist (IMA) system was developed with the aim of making every component lighter, more compact and more efficient than those in the former model. To reduce energy loss, inverter efficiency was increased by fine patterning of the Insulated Gate Bipolar Transistor (IGBT) chips, 12V DC-DC converter efficiency was increased by utilizing soft-switching, and the internal resistance of the IMA battery was lowered by modifying the electrodes and the current collecting structure. These improvements reduced the amount of heat generated by the unit components and made it possible to combine the previously separated Power Control Unit (PCU) and battery cooling systems into a single system. Consolidation of these two cooling circuits into one has reduced the volume of the newly developed IPU by 42% compared to the former model.

Flow Characteristics of the Servo Valve in the Fuel Supply System of APU (보조 동력 장치 연료 공급용 서보밸브의 유동 특성 해석)

  • Kim, S.S.;Chang, S.M.;Jeong, H.S.;Ryu, H.;Lee, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • In this paper, the authors benchmark a servo valve model for the fuel supply system of Auxiliary Power Unit (APU) in the KHP helicopter. This valve is directly driven with a torque motor, and the size of small gap controlled by a flapper can make change of flow rate under given pressure drop between inlet and outlet. CFD analyses using a commercial code, ANSYS-CFX 10 are performed for the series of three-dimensional models at various openness conditions. The computational results on simplified models show that CFD can play a fine roll in the design of flow path as well as in the estimation of flow force due to its precision and good repeatability. Consequently, the CFD analysis helps valve designers to understand its flow characteristics from the basis of physical fundamentals.

  • PDF

Normative values for the Grooved Pegboard Test in Adult (Grooved pegboard 검사의 정상성인의 표준치에 관한 연구)

  • Lee, Teak-Young
    • Physical Therapy Korea
    • /
    • v.8 no.2
    • /
    • pp.87-94
    • /
    • 2001
  • Dexterity is defined in the present study as interdigital manipulative skill or the fine manipulative movements of objects held between the thumb and fingers. The Grooved pegboard test has been used to evaluate dexterity requring visual-motor coordination. The purpose of this study was to standardize the completion time of the Grooved pegboard test in different age groups and gender. Normative values for the Grooved Pegboard Test was developed on the sample of 282 healthy volunteers (89 men and 183 women). Subjects were stratified according to gender and dominant hand and were subdivided into six groups by blocking. The results of this study were as follows: 1) There was a significant difference in completion time between dominant and nondominant hand in both men and women groups (p<.05). 2) There were significant differences in completion time between men and women group (p<.05) 3) There were significant differences in completion time among age groups (p<.05).

  • PDF