• Title/Summary/Keyword: Fine grained soils

Search Result 77, Processing Time 0.026 seconds

Undrained Cyclic Shear strength of Nak-dong River sands according to Plasticity Index of fine-grained soils (낙동강 모래의 세립분의 소성지수에 따른 비배수 반복 전단강도)

  • Kim, Sung-Ho;Kim, Young-Su;Park, Sung-Sik;Shin, Ji-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.68-75
    • /
    • 2010
  • Around the Nakdong River which is one part of the repairing business of 4 Grand Rivers currently being constructed, sandy ground is distributed throughout the wide area. Many civil engineering structures such as small and medium sized dams, flood control basins, and redevelopment of reservoirs and retention reservoirs are scheduled to be constructed, so the prevention measures for liquefaction are surely needed. To identify such liquefaction, a lot of factor affecting the strength of liquefaction were studied through laboratory investigation. Most of the conducted study was about clean sands, but in the case of the real ground the sand can exist not in the clean conditions but in the conditions mostly including sand of fine grained soil. The sand of fine grained soil has become a significant factor to assess liquefaction because many cases of liquefaction happened in the silty and clayer soil. In this study, un-drained tests of plasticity index of fine grained particles were conducted with the sands from Nakdong River. In result, the study shows that dynamic shear strength characteristics differ according to the plasticity index.

  • PDF

Estimation of Generalized Soil-Water Characteristic Curves Using Liquid Limit State (액성한계상태를 이용한 흙-수분 특성곡선의 평가)

  • Sung, Sang-Gyu;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.146-153
    • /
    • 2004
  • The goals of this study are to investigate the feasibility of the reference state approach in determining the generalized soil-water characteristic curve that is essential for characterization of unsaturated soil behavior. The soil-water characteristic curves are obtained from a number of specimens of fine-grained residual soils compacted with different void ratios. Based on the experimental test results, the feasibility of using the liquid limit state as the reference state for predicting the soil-water characteristic curve are verified. Finally, through the regression analysis of experimental data using the equation of Fredlund and Xing (1994), a reliable method is proposed to predict the generalized soil-water characteristic curve of fine-grained residual soils using the liquid limit state as the reference.

  • PDF

Comparisons of Drainage Performance on Coarse Grained Soils with Regard to Horizontal Drainage Type (조립질 지반에서의 수평배수재 종류에 따른 배수성능 비교)

  • Teawan Bang;Wanjei Cho;Seunghwan Seo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.25-31
    • /
    • 2023
  • Horizontal drainage, which are representative dewatering method of domestic and foreign slope, are applied to reducing pore water pressure. Accordingly, several previous studies have been conducted, but horizontal drainage are standardized which is an unclean standard for a quantity calculation in filed. Therefore, this study presents field soil and laboratory model box to identify a drainage performance and influencing factors of various horizontal drainage. Furthermore, this study verifies the performance comparison of drainage shape or size according to different particle size distributions. In the outflow results for steady state, the study found that all samples are drained at a constant rate after a minimum of 3 minutes to maximum of 15 minutes. In the case of comparing the outflow per hour (Unit flux) in coarse grained soils, it found that drainage shape and size affect drainage performance. In the result, the future expected to be used basic data that experiment of drainage performance on fine grained soils and determine the quantity.

Rheological Characteristics of Fine-Grained Soil with Sand Content (세립토의 모래함량에 따른 유변학적 특성 분석)

  • Kang, Hyo-Sub;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1897-1905
    • /
    • 2013
  • Rheological properties such as yield stress and viscosity is the main parameters to determine the fluidity of the debris flow. In this study, several series of rheometer tests were performed to investigate rheological properties of fine-grained soil samples with various sand contents and various liquidity indices. Test results indicated that the general shape of the flow curves for fine-grained soils had characteristics of a shear thinning fluid, with a decrease in viscosity as shear rate increases. The yield stress and viscosity of fine-grained soil samples with same sand content gradually decreased as the liquidity index increased. At the same liquidity index, yield stress and viscosity of fine-grained soil increased with an increase in sand content. The yield stress and viscosity of fine-grained soil greatly decreased with a slight increase in water content. Also, the yield stress and viscosity tend to increase with increasing concentration by volume($C_v$) of the fluid matrix. The values of the four coefficients ${\alpha}_1$, ${\alpha}_2$, ${\beta}_1$, and ${\beta}_2$ were obtained by regression analysis for each fine-grained soil.

A Case Study on Local Erosion Characteristics Evaluation of the Inchon Coast (인천 해안지역 지반의 국지적 침식특성 평가)

  • Kwak, Ki-Seok;Lee, Ju-Hyung;Park, Jae-Hyeon;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.455-465
    • /
    • 2006
  • In this study, the effect of scour was evaluated by regional and geotechnical characteristics and back data were accumulate for the design against scour through the local erosion characteristics evaluation of the Inchon coast. The erosion characteristics for the undisturbed soil samples collected near the main locations at the Incheon 2nd bridge, the Hwangyeong bridge, and a coast road in Songdo, are determined quantitatively through the scour rate tests. On the basic soil properties test, the bed around the Inchon coast chiefly consists of fined grained soils, and the soil samples were classified as silty clay(ML) or clay(CL) under the Unified Soil Classification System. On the scour rate test, the critical shear stress increases when the undrained shear strength increases as of the general trend of fine grained soils, and the average scour rate for the maximum velocity by 100 year flood is 173mm/hr at the Incheon 2nd bridge, 67mm/hr at the Hwangyeong bridge and 10mm/hr at a coast road in Songdo, respectively. Comparing to the scour rate of coarse grained soil, that of the bed around the Inchon coast is turned out to be very low. Therefore, the relative ability of the bed around the Inchon coast to resist erosion is assumed to be very high.

  • PDF

Effect of Silty Soil Content on Shear Behavior of Sandy Soil (사질토의 전단거동에 실트 함량이 미치는 영향)

  • Yu, Jeongseok;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.11
    • /
    • pp.21-26
    • /
    • 2020
  • Natural soil is composed of particles of various sizes, and the shear behavior which is a kind of mechanical behavior of the soil is affected by the particle size distribution. In addition, since the natural soil contains a large mixture of coarse and fine grained soil, it is difficult to clearly understand the shear behavior of the soil. Therefore, a ring shear test was conducted on sandy soils that has various particle size distribution in order to identify the effect of the distribution on shear characteristics of soils. At this time, sand and silt were used for coarse and fine grained soils, respectively, to make sandy soils by changing the silt content. Also the water was supplied during the test to confirm shear characteristics of sandy soils with various particle size distributions. The result shows that the shear strength increases as the silt content increases, and the strength decreases as the silt content increases over the sand. Besides, residual shear strength gradually decreases because of the silt content when the water is supplied.

Thermal Conductivity Measurement of Saturated Clayey Mixtures using Oedometer Consolidation and Constant Rate of Strain Consolidation Tests (표준압밀시험 및 일정변형율 압밀시험 결과를 이용한 포화된 혼합 점성토의 열전도계수 측정에 관한 실험적 연구)

  • Kim, HakSeung;Kwon, HyungSeok;Lee, Jangguen;Cho, Nam Jun;Kim, Hyun-Ki
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.275-281
    • /
    • 2012
  • Thermal distribution in soils must be considered in engineering designs and constructions, including estimates of frost heave and thaw settlement, infrastructure in cold regions, and geothermal systems. Because thermal conductivity is a key parameter for evaluation of thermal distribution in soils, it must be accurately estimated. The thermal conductivity of fine-grained soils has been widely studied in recent years; however, few studies have reported a reliable method for experimental measurement. The present study presents the results of an experimental investigation of the thermal conductivity of a saturated kaolinite-silica mixture with respect to the variation of dry density. Thermal conductivities were measured in Constant Rate of Strain (CRS) consolidation tests, and the experimental data were analyzed to evaluate the accuracy of the new measurement system. In addition, we present an evaluation method for predicting thermal conductivity in fine-grained soils.

Assessment of the effect of fines content on frost susceptibility via simple frost heave testing and SP determination

  • Jin, Hyunwoo;Ryu, Byung Hyun;Lee, Jangguen
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.393-399
    • /
    • 2022
  • The Segregation Potential (SP) is one of the most widely used predictors of frost heave in cold regions. Laboratory step-freezing tests determining a representative SP at the onset of the formation of the last ice lens (near the thermal steady state condition) can predict susceptibility to frost heave. Previous work has proposed empirical semi-log fitting for determination of the representative SP and applied it to several fine-grained soils, but considering only frost-susceptible soils. The presence of fines in coarse-grained soil affects frost susceptibility. Therefore, it is required to evaluate the applicability of the empirical semi-log fitting for both frost-susceptible and non-frost-susceptible soils with fines content. This paper reports laboratory frost heave tests for fines contents of 5%-70%. The frost susceptibility of soil mixtures composed of sand and silt was classified by the representative SP, and the suitability of the empirical semi-log fitting method was assessed. Combining semi-log fitting with simple laboratory frost heave testing using a temperature-controllable cell is shown to be suitable for both frost-susceptible and non-frost-susceptible soils. In addition, initially non-frost-susceptible soil became frost susceptible at a 10%-20% weight fraction of fines. This threshold fines content matched well with transitions in the engineering characteristics of both the unfrozen and frozen soil mixtures.

Bearing capacity of strip footings on unsaturated soils under combined loading using LEM

  • Afsharpour, Siavash;Payan, Meghdad;Chenari, Reza Jamshidi;Ahmadi, Hadi;Fathipour, Hessam
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.223-235
    • /
    • 2022
  • Bearing capacity of shallow foundations is often determined for either dry or saturated soils. In some occasions, foundations may be subjected to external loading which is inclined and/or eccentric. In this study, the ultimate bearing capacity of shallow foundations resting on partially saturated coarse-grained cohesionless and fine-grained cohesive soils subjected to a wide range of combined vertical (V) - horizontal (H) - moment (M) loadings is rigorously evaluated using the well-established limit equilibrium method. The unified effective stress approach as well as the suction stress concept is effectively adopted so as to simulate the behaviour of the underlying unsaturated soil medium. In order to obtain the bearing capacity, four equilibrium equations are solved by adopting Coulomb failure mechanism and Bishop effective stress concept and also considering a linear variation of the induced matric suction beneath the foundation. The general failure loci of the shallow foundations resting on unsaturated soils at different hydraulic conditions are presented in V - H - M spaces. The results indicate that the matric suction has a marked influence on the bearing capacity of shallow foundations. In addition, the effect of induced suction on the ultimate bearing capacity of obliquely-loaded foundations is more pronounced than that of the eccentrically-loaded footings.

Soil-water Characteristic Curve Assessment Using a Reference State Concept (비교상태 개념을 이용한 흙-수분 특성곡선 평가)

  • 성상규;이인모;이형주;조국환
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.27-35
    • /
    • 2004
  • The goal of this study is to investigate the feasibility of the reference state approach in determining the generalized soil-water characteristic curve that is essential fur characterization of unsaturated soil behavior. The soil-water characteristic curves are obtained from a number of specimens of fine-grained residual soils compacted with different void ratios. Based on the experimental test results, the feasibility of using the liquid limit state as the reference state for predicting the soil-water characteristic curve is verified. Finally, through the regression analysis of experimental data using the equation of Fredlund and Xing (1994), a reliable method is proposed to predict the generalized soil-water characteristic curve of fine-grained residual soils using the liquid limit state as the reference state.