• Title/Summary/Keyword: Fine ceramics

Search Result 244, Processing Time 0.031 seconds

Effects of High Energy Ball Milling on the Piezoelectric Properties of Lead-free (K0.44Na0.52)(Nb0.86Ta0.10)-0.04LiSbO3 Ceramics (고에너지 볼 밀링을 이용한 (K0.44Na0.52)(Nb0.86Ta0.10)-0.04LiSbO3 무연 압전 세라믹스의 특성)

  • Kim, Young-Hyeok;Heo, Dae-Young;Tai, Weon-Pil;Lee, Jae-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.363-367
    • /
    • 2008
  • Lead-free $(K_{0.44}Na_{0.52})(Nb_{0.86}Ta_{0.10})-0.04LiSbO_3$ piezoelectric ceramics have been synthesized by conventional sintering process and then investigated on the sintering and piezoelectric properties by high energy ball milling (HEBM) treatment. The powders milled for different time are characterized by XRD, FE-SEM. The powders are pressed into a pellet and sintered. It is found that the piezoelectric properties of sintered specimens are strongly dependent on the milling time. The piezoelectric properties are enhanced by high energy ball milling treatment. The planer electromechanical coupling factor ($k_p$) and piezoelectric constant ($d_{33}$) of a specimen sintered at $1050^{\circ}C$ are 0.44 and 267 pC/N, respectively.

Addition Effects of Sheet-like Ni Nanopowder on the Electrochemical Properties of Positive Electrode in Ni-Zn Redox Flow Battery (Ni-Zn 레독스 플로우 전지에 있어서 양극의 전기화학적 특성에 미치는 쉬트 형상의 Ni 나노분말 첨가 효과)

  • Seok, Hye-Won;Kim, Sei-Ki;Kang, Yang-Koo;Hong, Yeon-Woo;Lee, Young-Jin;Kim, Beom-Su;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.582-588
    • /
    • 2014
  • 3 mol% Co-added $Ni(OH)_2$ fine powders, which showed ${\beta}$-phase, as positive electrode materials have been fabricated using $NiSO_4{\cdot}6H_2O$ aqueous solution by ultrasonic spray-chemical precipitation and subsequent hydrothermal method, and sheet-like Ni nanopowder was fabricated by mechano-chemical reduction method. The addition effects of the sheet-like Ni nanopowder on the electrochemical properties of the positive electrode in Ni-Zn Redox flow battery were investigated. Impedance spectroscopy revealed that the addition of the sheet-like Ni nanopowder resulted in decrease in the electrical resistivity; 10 wt.% addition reduced the electrical properties by a fifth. Cyclic voltammetry showed the addition of the sheet-like Ni nanopowder resulted in decrease in the potential difference of oxidation and reduction; this means the increase in the reversability for electrode reduction. Charge/discharge measurement confirmed that the addition of the sheet-like Ni nanopowder resulted in the increase in the discharge efficiency.

High Thermal Conductivity Silicon Nitride Ceramics

  • Hirao, Kiyoshi;Zhou, You;Hyuga, Hideki;Ohji, Tatsuki;Kusano, Dai
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.380-384
    • /
    • 2012
  • This paper deals with the recent developments of high thermal conductivity silicon nitride ceramics. First, the factors that reduce the thermal conductivity of silicon nitride are clarified and the potential approaches to realize high thermal conductivity are described. Then, the recent achievements on the silicon nitride fabricated through the reaction bonding and post sintering technique are presented. Because of a smaller amount of impurity oxygen, the obtained thermal conductivity is substantially higher, compared to that of the conventional gas-pressure sintered silicon nitride, while the microstructures and bending strengths are similar to each other between these two samples. Moreover, further improvement of the thermal conductivity is possible by increasing ${\beta}/{\alpha}$ phase ratio of the nitrided sample, resulting in a very high thermal conductivity of 177 W/($m{\cdot}K$) as well as a high fracture toughness of 11.2 $MPa{\cdot}m^{1/2}$.

Microwave Dielectric Properties of the LiNb3O8-TiO2 Ceramic System with the Addition of Low Firing Agents (저온 소결제 첨가에 의한 LiNb3O8-TiO2계 세라믹스의 마이크로파 유전 특성)

  • Choi, Myung-Ho;Kim, Nam-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.517-523
    • /
    • 2008
  • The microwave dielectric properties of $LiNb_3O_8-TiO_2$ based ceramics with low firing agents, CuO, $Bi_2O_3$, $B_2O_3$, $SiO_2$, $TiO_2$, were investigated to improve the sintering condition for the LTCC system. According to the X-ray diffraction and SEM, the ceramics of $LiNb_3O_8-TiO_2$ with low firing agents showed no significant second phases within a range of experiments, and fine microstructures. By adding the low firing agents, the sintering temperature decreased from $1200^{\circ}C$ to $925^{\circ}C$. Based on the results of electrical measurements, the $LiNb_3O_8-TiO_2$ ceramics showed a promising microwave dielectric properties for LTCC applications, those are ${\varepsilon}_r$ (dielectric constant) = 44, Q f (quality factor) = 18000, and ${\tau}_f$ (the temperature coefficient of resonant frequency) = $-1.5\;ppm/^{\circ}C$.

Microstructure and Properties of Nano-Sized Ni-Co Particulate Dispersed $Al_2O_3$ Matrix Nanocomposites

  • Oh, Sung-Tag;Mutsuo Sando;Koichi Niihara
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.334-339
    • /
    • 1998
  • In purpose of introducing the inverse magnetostrictive properties into the structural ceramics, $Al_2O_3$ based nanocomposites dispersed with nano-sized Ni-Co particles were studied. The composites were fabricated by the hydrogen reduction and hot-pressing of $Al_2O_3$ and NiO-CoO mixed powders. The mixtures were prepared by using Ni- and Co-nitrate $(Ni(NO_3)_2\;{\cdot}\;6H_2O\;and\;Co(NO_3)_2\;{\cdot}\6H_2O)$ as source materials for the Ni-Co particles. Microstructural observations revealed that nano-sized Ni-Co particles were dispersed homogeneously at $Al_2O_3$ grain boundaries. High strength above 1 GPa was obtained for the $Al_2O_3/10$ wt% Ni-Co nanocomposite fabricated by a controlled powder preparation process. The inverse magnetostrictive response to applied stress was obtained due to the presence of dispersed Ni-Co particles, which indicates a possibility to incorporate new functions into the structural ceramics without loosing the mechanical properties.

  • PDF

Preparation and Characterization of LaAlO3 Ceramics from High Energy Ball Milling Powders (고에너지 볼 밀에 의한 LaAlO3 세라믹스의 제조와 특성)

  • 최상수;서병준;여기호;정수태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • Fine LaAlO$_3$ powders wore successfully synthesized from La$_2$O$_3$ and ${\gamma}$ $Al_2$O$_3$ powders milling for 10∼50 hours via the high energy milling technique (mechanochemical method) in room temperature and air. The particle size of LaAlO$_3$ powder were estimated from XRD patterns and SEM images to be 160∼180 nm. The LaAlO$_3$ ceramics arc derived for the synthesized powders (milling for 10, 30 and 50 hours) by sintering at 140$0^{\circ}C$ and 150$0^{\circ}C$. The micrographs of grains showed an agglomeration and the degree of agglomeration increased with the milling time. The LaAlO$_3$ made from synthesized powders milling for 50 hours can be sintered to 99.5% of theoretical density at 150$0^{\circ}C$ for 1 hour. These ceramics exhibits a dielectric constant of 20, a dielectric loss of 0.0003 and a temperature coefficient of capacitance of 15 ppm/$^{\circ}C$ at 1 MHz.

Effect of Si/Si3N4 Ratio on the Microstructure and Properties of Porous Silicon Nitrilde Prepared by SHS Methode (규소/질화규소 비가 자전연소합성공정을 이용한 다공질 질화규소 세라믹스의 미세구조와 특성에 미치는 영향)

  • Kim, Dong-Baek;Park, Dong-Soo;Hahn, Byung-Dong;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.338-342
    • /
    • 2007
  • Porous silicon nitride ceramics were prepared by SHS (Self-Propagating High Temperature Synthesis) from silicon powder, silicon nitride powder and pore-forming precursor. The microstructure, porosity and the flexural strength of the porous silicon nitride ceramics were varied according to the Si/Si3N4 ratio, size and amount of the pore-forming precursors. Some sample exhibited as high flexural strength as $162{\pm}24\;MPa$. The high strength is considered to result from the fine pore size and the strong bonding amoung the silicon nitride particles.

Electrical Properties of Rosen Type piezoelectric transformers using Low Temperature Sintering PMN-PNN-PZT ceramics (저온소결 PMN-PNN-PZT계 세라믹스를 이용한 Rosen형 압전변압기의 전기적 특성)

  • Lee, Sang-Ho;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.53-53
    • /
    • 2008
  • Piezoelectric transformers have been widely used such as DC-DC convertor, invertor, Ballast, etc. Because, the y have some merits compared with electro-magnetic transformers such as step-up ratio, high efficiency, small size and lg hit weight, etc. Piezoelectric transformer require high electromechanical coupling factor kp in order to induce a large out put power in proportional to applied electric field. And also, high mechanical quality factor Qm is required to prevent mechanical loss and heat generation. In general, PZT system ceramics should be sintered at high temperatures between 1200 and $1300^{\circ}C$ in order to obtain complete densification. Accordingly, environmental pollution due to its PbO evaporation. Hence, to reduce its sintering temperature, various kinds of material processing methods such as hot pressing, high energy mill, liquid phase sintering, and using ultra fine powder have been performed. Among these methods, liquid phase sintering is basically an effective method for aiding densification at low temperature. In this study, In order to comparis on low temperature sintering and solid state sintering piezoelectric transformers, rosen type transformers were fabricated u sing two PZT ceramics compositions and their electrical properties were investigated.

  • PDF

Piezoelectric and Dielectric Properties of Low Temperature Sintering PMN-PZN-PZT Ceramics according to the Milling Time (밀링 시간에 따른 저온소결 PMN-PZN-PZT 세라믹스의 압전 및 유전특성)

  • Yoo, Ju-Hyun;Lee, Il-Ha;Lee, Kab-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1039-1043
    • /
    • 2007
  • In this paper, in order to develop low temperature sintering ceramics for multilayer piezoelectric actuator application, PMN-PZN-PZT ceramics were fabricated using $LiCO_3,\;Bi_2O_3$ and CuO as sintering aids. And also, their piezoelectric and dielectric properties were investigated according to the milling time. All the specimens sintered at $930\;^{\circ}C$ showed tetragonal phases without secondary phases. With increasing milling time, piezoelectric and dielectric characteristic of specimens increased up to 60 hours milling time and then decreased due to the agglomeration of fine particle. Accordingly, it seems that 60 hour is optimum milling condition. At the sintering temperature of $930\;^{\circ}C$ and milling time of 60 hour, density, dielectric constant(${\varepsilon}_r$), electromechanical coupling factor (kp), mechanical quality factor (Qm), piezoelectric d constant showed the optimum value of $7.95\;g/m^3$, 1382, 0.546, 1749, 330 pC/N, respectively for multilayer piezoelectric actuator application.

Synthesis and Properties of Self-hardening Calcium Phosphate Cemetns for Biological Application

  • Song, Tae-Woong;Kim, Han-Yeop
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.129-133
    • /
    • 1997
  • Fine powder of $\alpha$-tricalcium phosphate, tetracalcium phosphate and dicalcium phosphate were mixed together to prepare self-setting cements which form hydroxyapatite, one of the well-known biocompatible materials, as the end of products of hydration. Hardening behaviour of the cements was examined at the temperature range of 37~$70^{\circ}C$ and 150~$250^{\circ}C$ under the normal and hydrothermal condition respectively. The conversion of cements into hydroxyapatite was significantly improved ast elevated temperature and the paste was strengtheed by interlocking of hydroxyapatite crystals, indicating that the strength is determined by microtexture rather the amount of conversion of cements into hydroxyapatite.

  • PDF