• Title/Summary/Keyword: Fine Registration

Search Result 31, Processing Time 0.025 seconds

Fine Registration between Very High Resolution Satellite Images Using Registration Noise Distribution (등록오차 분포특성을 이용한 고해상도 위성영상 간 정밀 등록)

  • Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.125-132
    • /
    • 2017
  • Even after applying an image registration, Very High Resolution (VHR) multi-temporal images acquired from different optical satellite sensors such as IKONOS, QuickBird, and Kompsat-2 show a local misalignment due to dissimilarities in sensor properties and acquisition conditions. As the local misalignment, also referred to as Registration Noise (RN), is likely to have a negative impact on multi-temporal information extraction, detecting and reducing the RN can improve the multi-temporal image processing performance. In this paper, an approach to fine registration between VHR multi-temporal images by considering local distribution of RN is proposed. Since the dominant RN mainly exists along boundaries of objects, we use edge information in high frequency regions to identify it. In order to validate the proposed approach, datasets are built from VHR multi-temporal images acquired by optical satellite sensors. Both qualitative and quantitative assessments confirm the effectiveness of the proposed RN-based fine registration approach compared to the manual registration.

Automated Feature-Based Registration for Reverse Engineering of Human Models

  • Jun, Yong-Tae;Choi, Kui-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2213-2223
    • /
    • 2005
  • In order to reconstruct a full 3D human model in reverse engineering (RE), a 3D scanner needs to be placed arbitrarily around the target model to capture all part of the scanned surface. Then, acquired multiple scans must be registered and merged since each scanned data set taken from different position is just given in its own local co-ordinate system. The goal of the registration is to create a single model by aligning all individual scans. It usually consists of two sub-steps: rough and fine registration. The fine registration process can only be performed after an initial position is approximated through the rough registration. Hence an automated rough registration process is crucial to realize a completely automatic RE system. In this paper an automated rough registration method for aligning multiple scans of complex human face is presented. The proposed method automatically aligns the meshes of different scans with the information of features that are extracted from the estimated principal curvatures of triangular meshes of the human face. Then the roughly aligned scanned data sets are further precisely enhanced with a fine registration step with the recently popular Iterative Closest Point (ICP) algorithm. Some typical examples are presented and discussed to validate the proposed system.

RNCC-based Fine Co-registration of Multi-temporal RapidEye Satellite Imagery (RNCC 기반 다시기 RapidEye 위성영상의 정밀 상호좌표등록)

  • Han, Youkyung;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.581-588
    • /
    • 2018
  • The aim of this study is to propose a fine co-registration approach for multi-temporal satellite images acquired from RapidEye, which has an advantage of availability for time-series analysis. To this end, we generate multitemporal ortho-rectified images using RPCs (Rational Polynomial Coefficients) provided with RapidEye images and then perform fine co-registration between the ortho-rectified images. A DEM (Digital Elevation Model) extracted from the digital map was used to generate the ortho-rectified images, and the RNCC (Registration Noise Cross Correlation) was applied to conduct the fine co-registration. Experiments were carried out using 4 RapidEye 1B images obtained from May 2015 to November 2016 over the Yeonggwang area. All 5 bands (blue, green, red, red edge, and near-infrared) that RapidEye provided were used to carry out the fine co-registration to show their possibility of being applicable for the co-registration. Experimental results showed that all the bands of RapidEye images could be co-registered with each other and the geometric alignment between images was qualitatively/quantitatively improved. Especially, it was confirmed that stable registration results were obtained by using the red and red edge bands, irrespective of the seasonal differences in the image acquisition.

Fine-image Registration between Multi-sensor Satellite Images for Global Fusion Application of KOMPSAT-3·3A Imagery (KOMPSAT-3·3A 위성영상 글로벌 융합활용을 위한 다중센서 위성영상과의 정밀영상정합)

  • Kim, Taeheon;Yun, Yerin;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1901-1910
    • /
    • 2022
  • Arriving in the new space age, securing technology for fusion application of KOMPSAT-3·3A and global satellite images is becoming more important. In general, multi-sensor satellite images have relative geometric errors due to various external factors at the time of acquisition, degrading the quality of the satellite image outputs. Therefore, we propose a fine-image registration methodology to minimize the relative geometric error between KOMPSAT-3·3A and global satellite images. After selecting the overlapping area between the KOMPSAT-3·3A and foreign satellite images, the spatial resolution between the two images is unified. Subsequently, tie-points are extracted using a hybrid matching method in which feature- and area-based matching methods are combined. Then, fine-image registration is performed through iterative registration based on pyramid images. To evaluate the performance and accuracy of the proposed method, we used KOMPSAT-3·3A, Sentinel-2A, and PlanetScope satellite images acquired over Daejeon city, South Korea. As a result, the average RMSE of the accuracy of the proposed method was derived as 1.2 and 3.59 pixels in Sentinel-2A and PlanetScope images, respectively. Consequently, it is considered that fine-image registration between multi-sensor satellite images can be effectively performed using the proposed method.

Coarse to Fine Image Registration of Unmanned Aerial Vehicle Images over Agricultural Area using SURF and Mutual Information Methods (SURF 기법과 상호정보기법을 활용한 농경지 지역 무인항공기 영상 간 정밀영상등록)

  • Kim, Taeheon;Lee, Kirim;Lee, Won Hee;Yeom, Junho;Jung, Sejung;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.945-957
    • /
    • 2019
  • In this study, we propose a coarse to fine image registration method for eliminating geometric error between images over agricultural areas acquired using Unmanned Aerial Vehicle (UAV). First, images of agricultural area were acquired using UAV, and then orthophotos were generated. In order to reduce the probability of extracting outliers that cause errors during image registration, the region of interest is selected by using the metadata of the generated orthophotos to minimize the search area. The coarse image registration was performed based on the extracted tie-points using the Speeded-Up Robust Features (SURF) method to eliminate geometric error between orthophotos. Subsequently, the fine image registration was performed using tie-points extracted through the Mutual Information (MI) method, which can extract the tie-points effectively even if there is no outstanding spatial properties or structure in the image. To verify the effectiveness and superiority of the proposed method, a comparison analysis using 8 orthophotos was performed with the results of image registration using the SURF method and the MI method individually. As a result, we confirmed that the proposed method can effectively eliminated the geometric errors between the orthophotos.

Fine Co-registration Performance of KOMPSAT-3·3A Imagery According to Convergence Angles (수렴각에 따른 KOMPSAT-3·3A호 영상 간 정밀 상호좌표등록 결과 분석)

  • Han, Youkyung;Kim, Taeheon;Kim, Yeji;Lee, Jeongho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.491-498
    • /
    • 2019
  • This study analyzed how the accuracy of co-registration varies depending on the convergence angles between two KOMPSAT-3·3A images. Most very-high-resolution satellite images provide initial coordinate information through metadata. Since the search area for performing image co-registration can be reduced by using the initial coordinate information, in this study, the mutual information method showing high matching reliability in the small search area is used. Initial coarse co-registration was performed by using multi-spectral images with relatively low resolution, and precise fine co-registration was conducted centering on the region of interest of the panchromatic image for more accurate co-registration performance. The experiment was conducted by 120 combination of 16 KOMPSAT-3·3A 1G images taken in Daejeon area. Experimental results show that a correlation coefficient between the convergence angles and fine co-registration errors was 0.59. In particular, we have shown the larger the convergence angle, the lower the accuracy of co-registration performance.

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.

Multi-resolution Image Registration

  • Wisetphanichkij, Sompong;Dejhan, Kobchai;Likitkarnpaiboon, Prayong;Cheevasuvit, Fusak;Sra-Ium, Napat;Vorrawat, Vinai;Pienvijarnpong, Chanchai
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.263-265
    • /
    • 2003
  • The computation cost of image registration is affected by searching data size and space. This paper proposes an efficient image registration algorithm that uses multi-resolution wavelet decomposed image to reduce the data size search. The algorithm determines the correlation detection at low resolution on low-pass sub bands of wavelet and generate mask for higher resolution as part of a coarse to fine registration algorithm. The correlation matching is defined for coarse resolution similarity measurement, while mutual information (MI) is used at fine resolution. The results show that the new efficient mask-based algorithm improves computational efficiency and yields robust and consistent image registration results.

  • PDF

Hue-assisted automatic registration of color point clouds

  • Men, Hao;Pochiraju, Kishore
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.223-232
    • /
    • 2014
  • This paper describes a variant of the extended Gaussian image based registration algorithm for point clouds with surface color information. The method correlates the distributions of surface normals for rotational alignment and grid occupancy for translational alignment with hue filters applied during the construction of surface normal histograms and occupancy grids. In this method, the size of the point cloud is reduced with a hue-based down sampling that is independent of the point sample density or local geometry. Experimental results show that use of the hue filters increases the registration speed and improves the registration accuracy. Coarse rigid transformations determined in this step enable fine alignment with dense, unfiltered point clouds or using Iterative Common Point (ICP) alignment techniques.

Rapid Rigid Registration Method Between Intra-Operative 2D XA and Pre-operative 3D CTA Images (수술 중 촬영된 2D XA 영상과 수술 전 촬영된 3D CTA 영상의 고속 강체 정합 기법)

  • Park, Taeyong;Shin, Yongbin;Lim, Sunhye;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1454-1464
    • /
    • 2013
  • In this paper, we propose a rapid rigid registration method for the fusion visualization of intra-operative 2D XA and pre-operative 3D CTA images. In this paper, we propose a global movement estimation based on a trilateration for the fast and robust initial registration. In addition, the principal axis of each image is generated and aligned, and the bounding box of the vascular shape is compared for more accurate initial registration. For the fine registration, two images are registered where the distance between two vascular structures is minimized by selective distance measure. In the experiment, we evaluate a speed, accuracy and robustness using five patients' data by comparing the previous registration method. Our proposed method shows that two volumes can be registered at optimal location rapidly, and robustly comparing with the previous method.