• Title/Summary/Keyword: Fine Forest

Search Result 231, Processing Time 0.039 seconds

Mass Loss Rates and Nutrient Dynamics of Decomposing Fine Roots in a Sawtooth Oak and a Korean Pine Stands

  • Kim, Choonsing
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.101-105
    • /
    • 2002
  • Fine root decomposition and nutrient release patterns were examined using in situ buried fine root (< 2mm in diameter) bags inserted vertically into the mineral soil to a depth of the top 15 cm in a sawtooth oak (Quercus acutissima) and a Korean pine (Pinus korainesis) stands in the Jungbu Forest Experiment Station, Kyonggi-do, Korea. The pine roots compared with the oak roots showed rapid mass loss in early stages of decomposition, but decomposed similarly after 12 months of incubation. Decomposition rates of fine roots were about 33%/yr for the oak roots and 37%/yr for the pine roots. Nutrients except for calcium and phosphorus showed similar concentrations between the oak and the pine roots during the study period. However, calcium concentration was significantly higher in the oak than in the pine roots. Nutrient concentrations in both stands except for nitrogen decreased during the study period. In addition, potassium compared with other nutrients was the most mobile ion and about 70% of initial amount was released during the first 3 months of incubation. The results indicate that tree species influence mass loss and nutrient dynamics of fine roots on similar site conditions.

  • PDF

Mass Loss Rates and Nutrient Dynamics of Decomposing Fine Roots in a Sawtooth Oak and a Korean Pine Stands

  • Kim, Choonsig
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.235-239
    • /
    • 2002
  • Fine root decomposition and nutrient release patterns were examined using in situ buried fine root (< 2mm in diameter) bags inserted vertically into the mineral soil to a depth of the top 15 cm in a sawtooth oak (Quercus acutissima) and a Korean pine (Pinus korainesis) stands in the Jungbu Forest Experiment Station, Kyonggi-do, Korea. The pine roots compared with the oak roots showed rapid mass loss in early stages of decomposition, but decomposed similarly after 12 months of incubation. Decomposition rates of fine roots were about 33%/yr for the oak roots and 37$\%$/yr for the pine roots. Nutrients except for calcium and phosphorus showed similar concentrations between the oak and the pine roots during the study period. However, calcium concentration was significantly higher in the oak than in the pine roots. Nutrient concentrations in both stands except for nitrogen decreased during the study period. In addition, potassium compared with other nutrients was the most mobile ion and about 70$\%$ of initial amount was released during the first 3 months of incubation. The results indicate that tree species influence mass loss and nutrient dynamics of fine roots on similar site conditions.

Seasonal Changes in the Absorption of Particulate Matter and the Fine Structure of Street Trees in the Southern Areas, Korea: With a Reference to Quercus myrsinifolia, Quercus glauca, Quercus salicina, Camellia japonica, and Prunus × yedoensis (한국 남부지역 가로수종 잎 미세구조와 미세먼지 흡착량의 계절 변화: 가시나무, 종가시나무, 참가시나무, 동백나무, 왕벚나무 중심으로)

  • Jin, Eon-Ju;Yoon, Jun-Hyuck;Choi, Myung Suk;Sung, Chang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.129-140
    • /
    • 2021
  • The study investigates the correlation between the seasonal changes in the absorption of fine dusts and the fine structure of surface on each type of street tree, such as Quercus myrsinifolia, Quercus glauca, Quercus salicina, Camellia japonica, and Prunus × yedoensis in the southernareas of Korea. The absorption ranges of fine dust were 31.51~110.44 ㎍/cm2 in January, 23.20~79.30 ㎍/cm2 in November, 22.68~76.90 ㎍/cm2 in May, and 9.88~49.91 ㎍/cm2 in August. The absorption value was about 54.4% higher in January than in May. With the grooves and hairs on the leaf surface and lots of wax, Q. salicina seems related to the high absorption rate of fine dust for each fine dust particle size. The one with gloss and smooth leaf surface has a low amount of wax. C. japonica Prunus × yedoensisshowed a low absorption rate of fine dust in each season. Whereas the increase in porosity density, length, and leaf area size can be related to the reduced PM and increasedabsorption rate, the leaf surface roughness, total wax amount, and porosity width can be related to the increase in the PM absorption rate. There was also a high correlation between the total wax amount and absorption rate of the leaf surface at the size of PM0.2 than PM10 and PM2.5. These results imply that the quantitative and qualitative trais of leaf, such as wax amounts and leaf surface,can increase the absorption of fine dusts, and the small-sized particles seem to be highly adsorbed with the high wax amounts.

Experimental Study on Reinforcement Effects of Soil Shear Strength by Nylon Net(Substitute Materials Simulating a Root System) -Analysis using Simple Shear Tester under Soil Suction Control - (Nylon Net(대체근계)의 토질강도보강효과에 대한 실험적 연구 - 토양수분제어하의 단순전단시험에 의한 해석 -)

  • Lee, Chang-Woo;Youn, Ho-Joong;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.76-81
    • /
    • 2006
  • The reinforcement of soil shear strength by nylon net as substitute materials simulating a fine root system was evaluated by soil strength parameters(apparent cohesion(c) and internal friction angle(tan${\phi}$), using simple shear tester which clearly depicts shear deformation and controls soil suction. And the results of shear test by using bamboo as a substitute materials simulating a main root system and using nylon net as a substitute materials simulating a fine root system were compared. The reinforcement of soil strength by nylon net are expressed by apparent cohesion more than internal friction angle. In addition the increment of apparent cohesion by nylon net reached a peak in suction 60 $cmH_2O$. Different from with bamboo, the possibility of the change on internal friction angle(tan${\phi}$) caused by the soil water condition was shown in shear strain 20% condition. These results show that the mechanism of reinforcement by substitute materials simulating root system may be different in the condition of various soil water content.

Studies on Characteristics of Pinus densiflora Forest in Kangwon Province(III) - Studies on the Tree-Root Form and Distribution on the Campus Forest, Kangwon Nat'l Univ. - (강원도(江原道) 소나무림(林)의 특성(特性)에 관한 종합적(綜合的) 연구(硏究)(III) - 강원대학교(江原大學校) 구육림(構肉林)의 근계(根系) 형태(形態)와 분포(分布)에 대하여 -)

  • Chun, Kun-Woo;Oh, Jae-Man
    • Journal of Forest and Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.8-24
    • /
    • 1994
  • Because of the underground existence of roots, a few studies have been reported on root system. The developmental information of roots should be understood for the studies of specific tree traits and the influence of such traits on the soil surface fixation. In order to clarify the specific character of pine forest in Kangwon Province, the investigation on the form and distribution of root system of pine trees were carried out for 5 trees in the Campus Forest, Kangwon National Univ.. Root form was very well in flat root. As soil depth was approximatly 50cm, fine roots were very sparsly distributed(+), roots of 0.2cm in diameter were most common and roots > 0.2cm were very rare, also thickness thined. 60~70% all the roots were developed at the depth of 0~30cm, where big roots were below 0.9cm in diameter and fine roots were higly sparse(+).

  • PDF

Relationship between the Aboveground Vegetation Structure and Fine Roots of the Topsoil in the Burnt Forest Areas, Korea (산화적지에서 지상부 식생구조와 표토에 분포하는 세근의 관계)

  • Lee, Kyu-Song;Park, Sang-Deog
    • The Korean Journal of Ecology
    • /
    • v.28 no.3
    • /
    • pp.149-156
    • /
    • 2005
  • This study was conducted to elucidate the relationship between the aboveground vegetation structure and fine roots of the topsoil (<15m), and thereafter to obtain the regression models for the estimation of the fine roots of the topsoil using the aboveground vegetation values in the burned forest areas, Korea. The FRT (fine roots of the top soil) as well as the aboveground vegetation structure showed spatial variation in the earlier successional stages after forest fire. The fine roots (<2 mm) of the topsoil in the earlier successional stages than the first 3 year after forest fire showed the range from 3 to 166 g $DM/m^2$. The FRT in the naturally regenerated sites and planted sites after forest fire was closely correlated with the vegetation indices, especially lvc, representing the development status of the aboveground vegetation. The FRT in the terrace seeding work sites after forest fire was closely correlated with year elapsed after terrace seeding work. The FRT in the terrace seeding work sites showed the much higher values because of the vigorous growth of grass species than the other sites. In the naturally regenerated sites, the FRT showed the parabola form according to the increment of aboveground vegetation value (Ivc). Although the aboveground vegetation value (Ivc) showed a tendency to increase logarithmically during the secondary succession after forest fire, the estimated fine roots of the topsoil was depicted the parabola form showing the gradual increment until the first 15 years and slight decrease thereafter. Decrease of FRT in the later successional stage showing the high vegetation value may be caused by increment of the woody species contribution to the vegetation value (Ivc). Our results represented that the aboveground vegetation value (Ivc) can be used to the estimation of the fine roots of the topsoil in burned forest areas.

A Study on the Development of Forest Fire Occurrence Probability Model using Canadian Forest Fire Weather Index -Occurrence of Forest Fire in Kangwon Province- (캐나다 산불 기상지수를 이용한 산불발생확률모형 개발 -강원도 지역 산불발생을 중심으로-)

  • Park, Houng-Sek;Lee, Si-Young;Chae, Hee-Mun;Lee, Woo-Kyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.95-100
    • /
    • 2009
  • Fine fuel moisture code (FFMC), a main component of forest fire weather index(FWI) in the Canadian forest fire danger rating system(CFFDRS), indicated a probability of ignition through expecting a dryness of fine fuels. According to this code, a rising of temperature and wind velocity, a decreasing of precipitation and decline of humidity in a weather condition showed a rising of a danger rate for the forest fire. In this study, we analyzed a weather condition during 5 years in Kangwon province, calculated a FFMC and examined an application of FFMC. Very low humidity and little precipitation was a characteristic during spring and fall fire season in Kangwon province. 75% of forest fires during 5 years occurred in this season and especially 90% of forest fire during fire season occurred in spring. For developing of the prediction model for a forest fire occurrence probability, we used a logistic regression function with forest fire occurrence data and classified mean FFMC during 10 days. Accuracy of a developed model was 63.6%. To improve this model, we need to deal with more meteorological data during overall seasons and to associate a meteorological condition with a forest fire occurrence with more research results.

Studies on Forest Soils in Korea (I) (한국(韓國)의 삼림토양(森林土壤)에 관(關)한 연구(硏究)(I))

  • Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.52-61
    • /
    • 1980
  • This study is carried out to learn the properties of forest soils in Korea and propose the reasonable management methods of forest land. Among 178 soil series surveyed until now in Korea forest soils include 64 series broken down according to the weathered products into 5 categories such as residual materials on mountain and hill, residual materials on rolling and hill, colluvial materials on local valley and fans, alluvial materials and volcanic ash soils. What discussed in this paper are classification system, parent rocks, texture class and drainage conditions of Korean forest soils. The characteristics of Korean forest soil properties classified in U.S.D.A. soil classification system are as follows: 1. Residual soils on mountain and hill (29 soil series) are almost Lithosols without any distinct soil profile development. They have loamy skeletal (11 series), coarse loamy (5 series), fine loamy (3 series), and fine clayey soils (3 series). Their drainage conditions are somewhat excessively drained in 16 series and well drained in 7 series. 2. Residual soils on rolling and hill (19 series) are Red-Yellow Podzolic soils with well developed soil profiles. They have coarse and fine loamy texture in 12 series and fine clayey texture in 5 series mostly with well drained condition. 3. Colluvial soils on local valley and fans (13 series) include mostly Regosols and some Red-Yellow Podzolic Soils and Acid Brown Forest Soils. They have loamy skeletal (4 series), coarse loamy (3 series), fine loamy (3 series), and fine clayey soils (2 series) with well drained condition. 4. Soil textures of weathered products of parent rocks are as follows: 1) Parent rocks producing coarse texture soils are rhyolite, granite gneiss, schist, shale, sandstone, siltstone, and conglomerate. 2) Parent rocks producing fine and heavy texture soils are limestone, basalt, gabbro, and andesite porphyry. 3) Granite is a parent rock producing various textured soils.

  • PDF

Effects of Forest Fire on the Water Storage Characteristics of Forest Land (산불이 임지(林地)의 수저류(水貯留) 특성(特性)에 미치는 영향(影響))

  • Lee, Heon Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.66-75
    • /
    • 1996
  • This study was carried out to examine the forest fire effect on water storage characteristics in the forests. Water storage capacity of the burned area was analyzed by several major factors, such as soil pore, maximum water content, effective water storage, and percolation rate. The results obtained from the analysis of major factors are as follows; The deeper soil depth, the less total pore, coarse pore, effective water storage, and percolation rate. However, fine pore increased slightly in both burned area and control plot. As compared with control plot, burned area showed lower percolation rate, coarse pore, and effective water storage, but higher values of fine pore. Directly after forest fire, the soil pore is little affected. But as the time passes, top soil structure changes and soil pore also is affected even in a deep soil. Estimated effective water storage was lower at top soil of Namcheon and at deep soil of Namha in all the burned areas, but slowly decreased in deep soil compared to control plots. Therefore it was concluded that forest water storage capacity was greatly affected by the forest fire.

  • PDF