Browse > Article
http://dx.doi.org/10.5141/JEFB.2005.28.3.149

Relationship between the Aboveground Vegetation Structure and Fine Roots of the Topsoil in the Burnt Forest Areas, Korea  

Lee, Kyu-Song (Department of Biology, Kangnung National University)
Park, Sang-Deog (Department of Civil Engineering, Kangnung National University)
Publication Information
The Korean Journal of Ecology / v.28, no.3, 2005 , pp. 149-156 More about this Journal
Abstract
This study was conducted to elucidate the relationship between the aboveground vegetation structure and fine roots of the topsoil (<15m), and thereafter to obtain the regression models for the estimation of the fine roots of the topsoil using the aboveground vegetation values in the burned forest areas, Korea. The FRT (fine roots of the top soil) as well as the aboveground vegetation structure showed spatial variation in the earlier successional stages after forest fire. The fine roots (<2 mm) of the topsoil in the earlier successional stages than the first 3 year after forest fire showed the range from 3 to 166 g $DM/m^2$. The FRT in the naturally regenerated sites and planted sites after forest fire was closely correlated with the vegetation indices, especially lvc, representing the development status of the aboveground vegetation. The FRT in the terrace seeding work sites after forest fire was closely correlated with year elapsed after terrace seeding work. The FRT in the terrace seeding work sites showed the much higher values because of the vigorous growth of grass species than the other sites. In the naturally regenerated sites, the FRT showed the parabola form according to the increment of aboveground vegetation value (Ivc). Although the aboveground vegetation value (Ivc) showed a tendency to increase logarithmically during the secondary succession after forest fire, the estimated fine roots of the topsoil was depicted the parabola form showing the gradual increment until the first 15 years and slight decrease thereafter. Decrease of FRT in the later successional stage showing the high vegetation value may be caused by increment of the woody species contribution to the vegetation value (Ivc). Our results represented that the aboveground vegetation value (Ivc) can be used to the estimation of the fine roots of the topsoil in burned forest areas.
Keywords
Erosion; Fine roots; Fire; Succession; Topsoil; Vegetation structure; Vegetation value;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gyssels, G. and J. Poesen. 2003. The importance of plant root characteristics in controlling concentrated flow erosion rates. Earth Surface Processes Landforms 28: 371-384   DOI   ScienceOn
2 김석철. 2003. 산불피해지역에서 재생된 식생이 토사유출에 미치는 영향. 강릉대학교 이학석사학위논문. 66 p
3 박상덕, 신승숙, 이규송. 2005. 산불지역의 유출 및 토양침식 민감도. 한국수자원학회논문집 38: 59-71   DOI   ScienceOn
4 소방방재청 국립방재연구소. 2004. '04년도 산지시험유역 운영을 통한 토사재해 저감효과 분석. 143 p
5 이규송. 1995. 진부 (강원도 평창군) 일대 화전 후 묵밭의 식생 천이 기구. 서울대학교 이학박사 학위논문. 237 p
6 이도형. 2001. 독일가문비(Picea abies L.)의 지상부와 지하부 생체량에 관한 연구: 흉고직경에 의한 뿌리생체량 추정. 한국임학회지 90: 338-345
7 이성학. 2003. 산불 피해 지역에서 산불 후 관리방법이 식물군집의 재생에 미치는 영향. 강릉대학교 교육대학원 교육학석사학위논문. 41 p
8 이인모, 성상규, 임충모. 1991. 뿌리의 강도가 자연사면 안정에 미치는 영향에 관한 실험연구. 대한토질공학회지 7: 51-66
9 조주형, 이종성. 2000. 식생뿌리의 전단강도 보강에 의한 사면안전율 해석 : 잣나무뿌리를 중심으로. 한국조경학회지 27: 80-93
10 차두송, 지병윤. 2003. 수목의 근계구성에 따른 사면의 붕괴방지효과에 관한 연구(III) : 잣나무뿌리의 공간분포. 한국임학회지 92: 33-41
11 행정자치부 국립방재연구소. 2001. 강원도 산불지역 재해의 저감대책 수립. 343 p
12 행정자치부 국립방재연구소. 2003. 산지지역 우수 및 토사유출량 관측 및 저감대책 수립. 173 p
13 환경부. 2002. 동해안 산불지역 생태계 변화 및 복원기법 연구. 244 p
14 Choung. Y., B.C. Lee, J.H. Cho, K.S. Lee, I.S. Jang, S.H. Kim, S.K. Hong, H.C. Jung and H.L. Choung. 2004. Forest response to the large-scale east coast fires in Korea. Ecol. Res. 19: 43-54   DOI   ScienceOn
15 Curt, T. and B. Prevosto. 2003. Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands. Plant Soil 255: 265-279   DOI   ScienceOn
16 Kwak, Y.S. and J.H. Kim. 1994. Spatial distribution of fine roots in Quercus mongolica and Quercus acutissima stands. Korean J. Ecol. 17: 113-119
17 Lane, L.J., M.H. Nichlls, L.R. Levick and M.P. Kidwell. 2001. A simulation model for erosion and sediment yield at the hillslope scale. In, Haron, R. S., Doe, W.W. III, Landscape erosion and evolution modelling. Kluwer Academic/Plenum Publishers, New York, pp. 201-237
18 Lee, K.S. and J.H. Kim. 1995a. Seral changes in floristic composition during abandoned field succession after shifting cultivation. Korean J. Ecol. 18:275-283
19 Lee, K.S. and J.H. Kim. 1995b. Seral changes in environmental factors and recovery of soil fertility during abandoned field succession after shifting cultivation. Korean J. Ecol. 18: 243-253
20 Morgan, R.P.C. 1996. Soil erosion and conservation. 2nd ed. Longman Group, London. 198 p
21 Schmidt, J. 2000. Soil erosion: Application of physically based models. Springer-Verlag, Berlin. 318 p
22 Tilman, D. 1988. Plant strategies and the dynamic and structure of plant communities. Princeton University Press, Princeton, N.J. 360 p
23 Toy, T.J., G.R. Forster and K.G. Renard. 2002. Soil erosion: Processes, prediction, measurement and control. John Wiley & Sons, Inc., New York. 338 p
24 이규송, 정연숙, 김석철, 신승숙, 노찬호, 박상덕. 2004. 동해안 산불 피해지에서 산불 후 경과 년 수에 따른 식생 구조의 발달. 한국생태학회지 27: 99-106
25 Jackson, R.B., H.A. Mooney and E.-D. Schulze. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl. Acad. Sci. USA 94: 7362-7366