• Title/Summary/Keyword: Fine Direction

Search Result 349, Processing Time 0.025 seconds

Classification of Ambient Particulate Samples Using Cluster Analysis and Disjoint Principal Component Analysis (군집분석법과 분산주성분분석법을 이용한 대기분진시료의 분류)

  • 유상준;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.51-63
    • /
    • 1997
  • Total suspended particulate matters in the ambient air were analyzed for eight chemical elements (Ca, Co, Cu, Fe, Mn, Pb, Si, and Zn) using an x-ray fluorescence spectrometry (XRF) at the Kyung Hee University - Suwon Campus during 1989 to 1994. To use these data as basis for source identification study, membership of each sample was selected to represent one of the well defined sample groups. The data sets consisting of 83 objects and 8 variables were initially separated into two groups, fine (d$_{p}$<3.3 ${\mu}{\textrm}{m}$) and coarse particle groups (d$_{p}$>3.3 ${\mu}{\textrm}{m}$). A hierarchical clustering method was examined to obtain possible member of homogeneous sample classes for each of the two groups by transforming raw data and by applying various distances. A disjoint principal component analysis was then used to define homogeneous sample classes after deleting outliers. Each of five homogeneous sample classes was determined for the fine and the coarse particle group, respectively. The data were properly classified via an application of logarithmic transformation and Euclidean distance concept. After determining homogeneous classes, correlation coefficients among eight chemical variables within all the homogeneous classes for calculated and meteorological variables (temperature. relative humidity, wind speed, wind direction, and precipitation) were examined as well to intensively interpret environmental factors influencing the characteristics of each class for each group. According to our analysis, we found that each class had its own distinct seasonal pattern that was affected most sensitively by wind direction.ion.

  • PDF

Long-term Trend of Atmospheric Concentrations of Fine Particles in Chuncheon, Korea (춘천시 미세먼지 농도의 장기변동 추세)

  • Yang, Ji-Hae;Kim, Sung-Rak;Jung, Jin-Hee;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.494-503
    • /
    • 2011
  • Fine particles ($PM_{2.5}$) were collected and analyzed from December 2005 through December 2009 in Chuncheon, Korea to investigate the long-term trend of $PM_{2.5}$ concentrations. Also $PM_{10}$ concentrations were collected from Environmental Monitoring System operated by Ministry of Environment. Average concentrations of $PM_{2.5}$ and $PM_{10}$ were 30.5 and 58.2 ${\mu}g/m^3$, respectively. Both $PM_{2.5}$ and $PM_{10}$ were significantly affected by meteorological factors including wind speed, wind direction and precipitation. They generally decreased as wind speed increased (p=0.000), and increased when there was a prevailing westerly wind. Low concentrations of $PM_{2.5}$ were observed during rainy days while high concentrations were shown when fog, mist and/or haze occurred.

On the Micro-structures of Rapidly Solidified Al-Si Alloy Powder and Growth Direction of Eutectic Silicon (급속응고된 Al-Si 합금분말의 미세조직과 공정 Si 의 성장방향)

  • Ra, Hyung-Yong;Lee, Joo-Dong
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.453-458
    • /
    • 1988
  • Al-Si alloy powder produced by the gas atomizer showed fine eutectic structure between ${\alpha}-dendrites$, that was grown by coupled growth, and there remained small amount of ${\alpha}$ in Al - 20 wt% Si alloy. The morphology of Si in the eutectic structure was largely influenced by the recalescence caused by solidification latent heat, and that was thought to be due to decrement of the surface energy of Si. In modified eutectic Si by rapid solidification, fine twin about $0.01\;{\mu}m$ was observed and growth direction of eutectic Si was <112>. This fact implied that the growth mechanism of eutectic Si in rapid solidification was related to TPRE mechanism. Due to rapid solidification Si was soluble in ${\alpha}-phase$ in Al - 12.6wt%Si alloy up to about 3.4wt%, and the solubility of Si in ${\alpha}-phase$ reaches the equilibrium solubility stare after 60min, holding when it was held isothermally at $253-296^{\circ}C$.

  • PDF

Size Distribution of Droplets Sprayed by an Orchard Sprayer (과수방제기 살포입자의 직경 분포특성)

  • 구영모;신범수;김상헌
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.431-440
    • /
    • 2001
  • Generated agri-chemical droplets by orchard sprayers are evaporated regenerated and transported along wind streams. The droplets are deposited to targets after changing their sizes, affecting the retention of droplets. An orchard sprayer, designed for spraying grapevines was studied on the spatial distribution of droplet size. The experimental variables were spray direction (0, 22.5, 45, 67.5 and 90˚), distance(2.5, 3.0 and 3.5 m) and fan speed (2,075 and 3,031 rpm). Droplet sizes were converted and analyzed from spray stains, sampled using water sensitive papers. The number median diameter (NMD) increased with an increase of the distance due to disappeared fine droplets (<50 ㎛): however, the volume median diameter (VMD) decreased due to shrunken large droplets (>100 ㎛). Fast fan speed delivered large droplets to 3.5 m, but the spatial distributions of NMD and VMD were not uniform. Slower fan speed decreased the possibility of evaporation and drift; therefore, plenty of droplets were maintained up to 3.0 m. The upward blasting distance was limited within 3 m, but the limit to the ground level was extended to 3.5 m. Concentrated wind and droplets to the ground level should be redistributed to upper canopy direction, leading more uniform deposits. High speed wind and system pressure should be avoided because of generating fine droplets, which would be disappeared and drifted away.

  • PDF

An Analysis of Direction Finding Accuracy of ELINT System (TDOA 기법을 활용한 ELINT 장비의 방위탐지 정확도 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo;Kim, Min-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3104-3109
    • /
    • 2009
  • The technology of direction finding is very important to find the direction of emitters for ELINT(electronic intelligence) system. The principle of TDOA(time difference of arrival) is to receive an emitter signal with two antennas, measure the time difference between two antennas, and converse the time difference to direction difference. This technology can be used in broadband frequency system and make the system very simple because a phase-discriminator and a voltage comparator are not needed. For fine DF accuracy, high time resolution receiver and long basis line antennas are needed. The DF accuracy of noise added signals is simulated with different time

Automatic detection of the optimal ejecting direction based on a discrete Gauss map

  • Inui, Masatomo;Kamei, Hidekazu;Umezu, Nobuyuki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, the authors propose a system for assisting mold designers of plastic parts. With a CAD model of a part, the system automatically determines the optimal ejecting direction of the part with minimum undercuts. Since plastic parts are generally very thin, many rib features are placed on the inner side of the part to give sufficient structural strength. Our system extracts the rib features from the CAD model of the part, and determines the possible ejecting directions based on the geometric properties of the features. The system then selects the optimal direction with minimum undercuts. Possible ejecting directions are represented as discrete points on a Gauss map. Our new point distribution method for the Gauss map is based on the concept of the architectural geodesic dome. A hierarchical structure is also introduced in the point distribution, with a higher level "rough" Gauss map with rather sparse point distribution and another lower level "fine" Gauss map with much denser point distribution. A system is implemented and computational experiments are performed. Our system requires less than 10 seconds to determine the optimal ejecting direction of a CAD model with more than 1 million polygons.

Understanding the Effect of Friction Coefficient on Strain Distribution in Cu-0.2wt%Mg Alloy during Wire Drawing using Finite Element Analysis (유한요소해석을 이용한 인발 공정 시 Cu-0.2wt%Mg 합금의 변형률 분포에 미치는 마찰계수 영향의 이해)

  • T. H. Yoo;S. W. Baek;J. H. Kim;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.35-40
    • /
    • 2023
  • In the case of a wire with a very fine diameter during the multi-stage drawing process, the heterogeneity of the deformation in the radial direction tends to develop strongly as the amount of deformation is accumulated. It is known that the heterogeneity of deformation in the radial direction of the wire is closely related to the process parameters during the multi-stage drawing process. In this study, finite element analysis (FEA) was used to theoretically examine the effect of friction between the surface of the wire and the drawing die during the multi-stage drawing process of Cu-0.2wt%Mg alloy on the deformation heterogeneity developed in the radial direction of the wire. The distribution of effective strain, radial strain, circumferential strain, and shear strain developed in the radial direction of the wire during the multi-stage drawing process was analyzed while changing the friction coefficient, and the results were analyzed and compared for each path and position. The FEA results revealed that the shear strain developed in the radial direction of the wire during the multi-stage drawing process of Cu-0.2wt%Mg alloy showed the most non-uniform distribution and was also severely affected by the friction coefficient.

Research on ultra-precision fine-pattern machining through single crystal diamond tool fabrication technology (단결정 다이아몬드공구 제작 기술을 통한 초정밀 미세패턴 가공 연구)

  • Jung, Sung-Taek;Song, Ki-Hyeong;Choi, Young-Jae;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • As the consumer market in the VR(virtual reality) and the head-up display industry grows, the demand for 5-axis machines and grooving machines using on a ultra-precision machining increasing. In this paper, ultra-precision diamond tools satisfying the cutting edge width of 500 nm were developed through the process research of a focused ion beam. The material used in the experiment was a single-crystal diamond tool (SCD), and the equipment for machining the SCD used a focused ion beam. In order to reduce the influence of the Gaussian beam emitted from the focused ion beam, the lift-off process technology used in the semiconductor process was used. 2.9 ㎛ of Pt was coated on the surface of the diamond tool. The sub-micron tool with a cutting edge of 492.19 nm was manufactured through focused ion beam machining technology. Toshiba ULG-100C(H3) equipment was used to process fine-pattern using the manufactured ultra-precision diamond tool. The ultra-precision machining experiment was conducted according to the machining direction, and fine burrs were generated in the pattern in the forward direction. However, no burr occurred during reverse machining. The width of the processed pattern was 480 nm and the price of the pitch was confirmed to be 1 ㎛ As a result of machining.

Effects of Initial Nucleation Condition at the Start Block on the Grain Size and Growth Direction in Directionally Solidified CM247LC Superalloy (CM247LC 초내열합금에서 일방향응고 스타트 블록의 초기 핵생성 조건에 따른 결정립 성장)

  • Yoon, Hye-Young;Lee, Je-Hyun;Jung, Hyeong-Min;Seo, Seong-Moon;Jo, Chang-Young;Gwon, Seok-Hwan;Chang, Byeong-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • The grain size and growth direction of a directionally solidified turbine blade were evaluated by the initial nucleation condition at the start block of directional solidification. The initial nucleation condition was controlled by inserting a Ni foil on the directional solidification plate of the directional solidification furnace. Fine grains with good orientation were obtained in the faster cooling condition at the start block. The nucleus number was compared with the cooling rate of the start block by electron back scattered diffraction (EBSD). DSC (differential scanning calorimeter) analysis was performed to compare the melting point and undercooling for nucleation of the coarse nuclei and fine nuclei of the start block. The faster cooling condition at the start block showed more undercooling for nucleation and smaller size of nuclei which resulted in a fine grain with good orientation in the directional turbine blade.

Fine particulate Judgment based on Fuzzy Inference System (FUZZY 추론 시스템 기반 미세먼지 판단)

  • Hong, You-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.127-133
    • /
    • 2020
  • The international cancer research institute under the WHO designated fine dust as a first-class carcinogen. Particular matter refers to dust that is small enough to be invisible and floating in the air. Particular matter is mainly emitted from the combustion process of fossil fuels such as coal and oil, and is a risk factor that can cause lung disease, pneumonia, and heart disease. The Ministry of Environment recently analyzed the output data of 10 fine dust measuring stations and, as a result, announced that about 60% had an error that the existing atmospheric measurement concentration was higher. In order to accurately predict fine dust, the wind direction and measurement position must be corrected. In this paper, in order to solve these problems, fuzzy rules are used to solve these problems. In addition, in order to calculate the fine particulate sensation index actually felt by pedestrians on the street, a computer simulation experiment was conducted to calculate the fine particulate sensation index in consideration of weather conditions, temperature conditions, humidity conditions, and wind conditions.