• Title/Summary/Keyword: Fin shape Factor

Search Result 38, Processing Time 0.021 seconds

Shape Optimization of a Heat Exchanger with Internally Finned Tube (내부핀이 부착된 원형관 열교환기의 형상 최적화)

  • Lee, Ju-Hee;Lee, Sang-Hwan;Park, Kyoung-Woo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1418-1423
    • /
    • 2004
  • Optimization of a heat exchanger with internally finned circular tubes has been performed for three-dimensional periodically fully developed turbulent flow and heat transfer. The design variables of fin number N, fin width ($d_1,d_2$) and fin height(H), are numerically optimized for the limiting conditions of $N=22{\sim}37$, $d_1=0.5{\sim}1.5$ mm, $d_2=0.5{\sim}1.5$ mm, $H=0.1{\sim}1.5$. Due to the periodic boundary conditions along main flow direction, the three layers of meshes are considered. The CFD and the mathematical optimization are coupled to optimize the heat exchanger. The flow and thermal fields are predicted using the finite volume method and the optimization is carried out by using the sequential quadratic programming (SQP) method which is widely used in the constrained nonlinear optimization problem.

  • PDF

The Crack Analysis and Redesign of Horizontal Fin of F-5E/F's External Fuel Tank (F-5E/F 외부 연료탱크 수평 핀 균열 분석 및 재설계)

  • Kang, Chi-Hang;Yoon, Young-In;Jung, Dae-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.382-388
    • /
    • 2010
  • In this work the replacement material for magnesium alloy was investigated and an optimized design was suggested for the horizontal fin of a fighter's external fuel tank. For the replacement of magnesium alloy, Aluminum alloy, AL 2034-T351, was selected by considering material properties and its procurement. The strength and fracture toughness properties of AL 2034-T351 are stronger than those of magnesium alloy, but the specific weight of AL 2034-T351 is heavier than that of magnesium alloy by 65%. To meet the allowable limit of C.G. shift in the tank, the design of horizontal fin was optimized by reducing the original shape by 20% and resizing the maximum thickness to 7 mm. From the results of the static and dynamic stress analysis for improving the safety factor of the joint section and the joint hole, the radius of curvature in the aft joint section of the new fin was designed as 8.5mm.

SHAPE OPTIMIZATION OF INTERNAL COOLING CHANNEL WITH STEPPED CIRCULAR PIN-FINS (단을 가진 원형 핀휜이 부착된 냉각유로의 형상 최적 설계)

  • Moon, M.A.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.229-232
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of stepped circular pin-fins to enhance turbulent heat transfer. The KRG method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The objective function is defined as a linear combination of heat transfer and friction loss related terms with a weighting factor. Ten training points are obtained by Latin Hypercube Sampling for two design variables. Optimum shape has been successfully obtained with the increased objective function.

  • PDF

SHAPE OPTIMIZATION OF INTERNAL COOLING CHANNEL WITH STEPPED CIRCULAR PIN-FINS (단을 가진 원형 핀휜이 부착된 냉각유로의 형상 최적 설계)

  • Moon, M.A.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.229-232
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of stepped circular pin-fins to enhance turbulent heat transfer. The KRG method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The objective function is defined as a linear combination of heat transfer and friction loss related terms with a weighting factor. Ten training points are obtained by Latin Hypercube Sampling for two design variables. Optimum shape has been successfully obtained with the increased objective function.

  • PDF

A Study on Heat Exchange Efficiency of EGR Cooler for Diesel Hybrid (하이브리드 디젤엔진용 EGR 쿨러의 열교환 효율 연구)

  • Lee, Joon;Moon, Jeon-Il;Kim, Yeon-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.159-164
    • /
    • 2009
  • Cooled EGR system is an effective method for the reduction of $NO_x$ emission and PM emission from a diesel engine. Proper choice of wavy cooling fins and gas tubes is a key factor of cooled EGR system. As a part of solutions for energy crisis and environmental problems, hybrid vehicles mounted with diesel engines are under development globally. This study investigates the cooled EGR systems for hybrid diesel engine with the specifications of both optimized wavy cooling fins and improved shape of structure to verify the heat exchange efficiency, outlet temperature and gas pressure drop of cooler by means of numerical analyses and rig performance tests. The output of this study will be applied to a 2.0L hybrid diesel engine which is being developed for domestic and overseas market.

A Study on Development of Oval Type High Efficient EGR Cooler (고효율 Oval형 EGR 쿨러 개발에 관한 연구)

  • Lee, Joon;Moon, Jeon-Il;Han, Chang-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • The EGR system is one of important components in diesel engine. The regulation on NOx emission has been tightened up. Therefore, it is a significant issue to develop and commercialize the high efficient EGR cooler system that reduces NOx emission in DI diesel engine. Key performance factor of the EGR cooler system is how to properly design both wavy cooling fins and gas tubes. This paper proposes a high efficient EGR cooler that has been upgraded with both the optimized wavy cooling fins and the improved shape of structure. The evaluation of the heat exchange efficiency, outlet temperature, and gas pressure drop of the EGR cooler is performed with the prototype of the proposed EGR cooler. The result shows a good solution and will be implemented to the model of a clean diesel engine being developed for both domestic and overseas market.

CFD Analysis on the Heat Transfer Performance with Various Obstacles in Air Channel of Air-Type PV/Thermal Module (공기식 태양광/열 시스템 공기채널 내 여러 저항체 설치에 따른 전열성능에 관한 CFD 해석)

  • Choi, Hwi-Ung;Fatkhur, Rokhman;Kim, Young-Bok;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.33-43
    • /
    • 2018
  • PV/Thermal module is the combined system, which consist of a photovoltaic module and solar thermal collector that can obtain electrical power and thermal energy simultaneously. Thus the power generation can be increase by decreasing the temperature of photovoltaic module and thermal energy retrieved from module also can be used for heating system. In this study, Heat transfer performance of air type PV/Thermal module was confirmed with various bottom obstacles that can be installed easily to real photovoltaic module by CFD (computational fluid dynamics) analysis. Eight type obstacles were investigated according to the shape and arrangement. As a result, nusselt number represent heat transfer performance was increased about 86% compare with the basic type PV/Tthermal module that has no obstacle and triangle type obstacle had higher value than other types. But pressure drop was also increased with increment of heat transfer enhancement. Thus the performance factor considering both heat transfer and pressure drop was confirmed and V-fin type obstacle arranged in a row for Reynolds number below 9,600 and protrusion type obstacle arranged in zigzag for Reynolds number above 14,400 were shown higher performance factor than other types. From these results, V-fin type obstacle arranged in row and protrusion type obstacle arranged in zigzag were considered as a proper type for applying to real PV/thermal module according to operating condition. But the heat transfer performance can be changed by the geometric conditions of obstacle such as height, width, length and arrangement. Thus, it could also confirmed that the optimal condition and arrangement of this obstacle need to be found in further study.

Shape Optimization of a Rotating Cooling Channel with Pin-Fins (핀휜이 부착된 회전하는 냉각유로의 최적설계)

  • Moon, Mi-Ae;Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.703-714
    • /
    • 2010
  • This paper describes the design optimization of a rotating rectangular channel with staggered arrays of pin-fins by Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to the diameter of the pin-fins and the ratio of the spacing between the pin-fins to the diameter of the pin-fins are chosen as the design variables. The objective function that is a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. To construct the Kriging model, objective function values at 20 training points generated by Latin hypercube sampling are evaluated by a three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis method with the SST turbulence model. The Kriging model predicts the objective function value that agrees well with the value calculated by the RANS analysis at the optimum point. The objective function is reduced by 11% by the optimization of the channel.