• 제목/요약/키워드: Fin length

검색결과 475건 처리시간 0.02초

Optimization of a Thermally Asymmetric Rectangular Fin: Based on Fixed Fin Height

  • Kang, Hyung-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권3호
    • /
    • pp.145-151
    • /
    • 2005
  • A thermally asymmetric straight rectangular fin is analysed and optimized using the two-dimensional separation of variables method. The optimum heat loss is presented as a function of bottom to top Biot number ratio, fin base length and top Biot number. Decreasing rate of the optimum fin length with the increase of the fin base length is listed. The optimum fin tip length is shown as a function of bottom to top Biot number ratio, fin base length and tip to top Biot number ratio. One of the results shows that the optimum heat loss and the actual optimum fin length decrease while the optimum fin tip length increases as the fin base length increases.

대칭 사다리꼴 핀과 비대칭 사다리꼴 핀의 성능 비교 (Comparison of Performance between Symmetric Trapezoidal Fins and Asymmetric Trapezoidal Fins)

  • 강형석
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.205-213
    • /
    • 2016
  • Heat loss and fin efficiency of symmetric and asymmetric trapezoidal fins with variable slope of fin's top surface are obtained by using a two-dimensional analytic method. Shapes of symmetric and asymmetric fins are changed from rectangular through trapezoidal to triangular by adjusting the fin shape factor. The ratio of symmetric trapezoidal fin length to asymmetric trapezoidal fin length is presented as a function of fin base height and convection characteristic number. The ratio of symmetric trapezoidal fin efficiency to asymmetric trapezoidal fin efficiency is presented as a function of the fin base height and fin shape factor. One of results shows that asymmetric trapezoidal fin length is shorter than symmetric trapezoidal fin length (i.e., asymmetric trapezoidal fin volume is smaller than symmetric trapezoidal fin volume) for the same heat loss when the fin base height and fin shape factor are the same.

삼각 핀의 해석과 고정된 핀 바닥 높이에 기준한 최적화 (Analysis and Optimization based on the Fixed Fin Base Height for a Triangular Fin)

  • 강형석
    • 신재생에너지
    • /
    • 제3권1호
    • /
    • pp.13-19
    • /
    • 2007
  • A triangular fin with variable fin base thickness and base height is analyzed and optimized for the fixed fin base height using a two-dimensional analytical method. At the middle of the fin length, the variation of the temperature along the fin height is listed. The influences of the fin length, base thickness and base height on the heat loss and fin efficiency are analyzed, The optimum heat loss, corresponding optimum efficiency and optimum fin length as a function of the fin base thickness are presented. The optimum heat loss and optimum fin tip length as a function of the convection characteristic number are represented.

  • PDF

내부유체를 가진 Pin Fin의 최적화 (고정된 핀 체적 기준) (Optimization of a Pin Fin with inside Fluid (based on Fixed Fin Volume))

  • 강형석
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.3-7
    • /
    • 2009
  • A cylindrical pin fin with inside fluid is optimized based on fixed fin volume by using the one dimensional analytic method. Heat loss from the fin and the pin fin radius for fixed fin volume is presented as a function of the fin length. Temperature variation of the fin with the variation of ambient and inside fluid convection characteristic numbers and fin base thickness is listed. The maximum heat loss at the practical fin length and corresponding optimum fin length and radius are presented as a function of fin base thickness, inside convection characteristic number, fin volume and ambient convection characteristic number. One of the results shows that the optimum pin fin shape becomes relatively fatter as the fin volume increases.

  • PDF

원형 pin fin과 반원형 pin fin 사이의 성능 비교 (Comparison of Performance Between a Circular Pin Fin and a Half Circular Pin Fin)

  • 강형석
    • 산업기술연구
    • /
    • 제36권
    • /
    • pp.17-22
    • /
    • 2016
  • A circular pin fin (CPF) and a half circular pin fin (HCPF) are by using the one-dimensional analytic method. For these two fins, 90% of the maximum heat loss, Corresponding fin length for 90% of the maximum heat loss, fin effectiveness and fin efficiency are compared as functions of convection characteristic number and fin radius. Also, the ratio of heat loss from the HCPF to that from CPF listed with variation of fin length when the fin volumes are the same. One of the results shows that the efficiency of a CPF is larger than that of a HCPF while the effectiveness of a CPF is smaller than that of a HCPF when convection characteristic number, fin length and fin radius are the same.

  • PDF

삼각핀에 대한 핀끝의 영향 (The Effect of Fin Tip on the Triangular Fin)

  • 강형석
    • 산업기술연구
    • /
    • 제13권
    • /
    • pp.81-87
    • /
    • 1993
  • 핀끝이 절연 되었을 때와 절연되지 않았을 때의 두가지 경우에 대하여 삼각핀을 2차원적으로 해석하고 또한 삼각핀 끝의 온도를 단지 유한하다고 놓았을 때 이를 1차원적으로 해석하여 각각의 세가지 경우에 대한 핀으로 부터의 열손실과 핀중심을 따른 온도변화를 Biot number와 무차원적인 핀의 길이의 변화에 따라 비교 분석하여 구체적으로 삼각핀에 대한 핀끝의 영향을 보여준다. 결과들은 다음과 같다. 핀의 길이가 아주 짧을 경우 2차원적으로 해석한 핀끝이 절연되지 않았을 때의 열손실에 대한 같은 2차원적으로 해석한 핀끝이 절연 되었을 대의 열손실의 상대오차가 매우 크며 핀의 길이를 따른 무차원적인 온도변화는 1차원적으로 해석한 핀끝의 온도가 유한할 경우에 가장 낮은 값을 나타내며 2차원적으로 해석한 핀끝이 절연되었을 경우가 가장 높은 값을 나타낸다.

  • PDF

대류, 복사 사각 핀의 해석 (Analysis of a Convective, Radiating Rectangular Fin)

  • 강형석;김종욱
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.29-34
    • /
    • 2006
  • A convective, radiating rectangular fin is analysed by using the one dimensional analytic method. Instead of constant fin base temperature, heat conduction from the inner wall to the fin base is considered as the fin base boundary condition. Radiation heat transfer is approximately linearized. For different fin tip length, temperature profile along the normalized fin position is shown. The fin tip length for 98% of the maximum heat loss with the variations of fin base length and radiation characteristic number is listed. The maximum heat loss is presented as a function of the fin base length, radiation characteristic number and Biot number.

  • PDF

역 사다리꼴 핀의 최적화 (Optimization of a Reversed Trapezoidal Fin)

  • 강형석
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.987-995
    • /
    • 2006
  • A reversed trapezoidal fin with the fluid in the inside wall is analyzed and optimized in this study. As a fin base boundary condition, the heat transfer from inside wall fluid to the fin base is considered. The values of fin base temperature with the variations of inside wall fluid convection characteristic number and fin base length are listed. The heat transfer, fin effectiveness, fin length and fin base height are optimized as a function of fin base length, convection characteristic number ratio, fin shape factor and fin volume.

내벽에 유체가 있는 대류 사다리꼴 형상 Fin의 최적화 (Optimization of Convective Trapezoidal Profile Fin having Fluid inside the Wall)

  • 정병철;이성주;윤세창;강형석
    • 설비공학논문집
    • /
    • 제18권2호
    • /
    • pp.95-102
    • /
    • 2006
  • This study analyzes and optimizes a design for a trapezoidal profile straight fin using one-dimensional analytical method. The heat transfer, fin length and fin height are optimized as a function of fin volume, fin shape factor and fin base length. In this optimization, convection characteristic number over fin surface and that of fluid inside fin wall are considered. One of the results shows that the maximum heat loss increases as fin volume increases and both fin shape factor and fin base length decrease.

Three-Dimensional Performance Analysis of a Thermally Asymmetric Rectangular Fin

  • Kang, Hyung-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권2호
    • /
    • pp.94-101
    • /
    • 2001
  • Fin effectiveness and efficiency of a thermally asymmetric rectangular fin are represented as a function of non-dimensional fin length, width, fip tip surface Biot number and the ratio of fin bottom surface Biot number to top surface Biot number. For this analysis, three dimensional separation of variables method is used. One of the results shows that fin effectiveness can be increased or decreased depending on the fin length as the fin tip surface Biot number increases while fin efficiency decreases without depending on that as the fin tip surface Biot number increases.

  • PDF