• Title/Summary/Keyword: Fin emissivity

Search Result 4, Processing Time 0.016 seconds

Numerical Investigations of Enhancement of a Convective Fin Efficiency by Convection-Radiation Gonjugate Heat Transfer (대류-복사 복합 열전달을 고려한 대류 핀효율의 향상에 관한 수치적 연구)

  • 이동렬;김호용;이재곤;박용국;김기대
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.146-154
    • /
    • 2001
  • In almost all real situations, there will be a radiant interchange between adjacent fins with the base surface as well as with the external environment. In the problem of this study, a rectangular fin is attached to a based. Our concern is whether the convective fin efficiency can be increased by the radiation heat exchanged between the fin and the base surface and how much. If the fin temperature toward the tip increased by the effect of radiation, the convective heat transfer increase due to the temperature difference between the ambient temperature and the surface temperature of the fin. If this true, the efficiency of the fin due to the radiation will increase. Attention is directed toward several parameters which have major roles on getting values of the fin efficiencies in several different values of parameters. Many different cases are, therefore, to be examined to have maximum fin efficiency by varying the values of each parameter.

  • PDF

An Investigation of Radiation Heat Transfer on The Horizontal Fin of An External Fuel Tank by Flame of a Flying Flare (날아가는 섬광탄이 연료탱크 수평핀에 미치는 복사열전달 연구)

  • Jung, Daehan;Kang, Chihang;Kim, Sitae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.197-203
    • /
    • 2014
  • In this paper, the effect of unsteady radiation on the horizontal fin of an external fuel tank by flame of a flying flare was analysed to see the temperature increase of the fin and the thermal impact on the fin. Radiation between two surfaces was calculated using the concept of radiation resistance of surface and space including radiation, irradiation and shape factor for two flying trajectories of a flare, maximum temperature of 2200 K, emissivity of 0.95, flying velocity of 30 m/s, and thermal surface area of $0.01m^2$. The result shows that the temperature increase of the fin is 0.236 K, and the thermal effect on the fin is ignorable. And it was found that temperature is increased a little because small amount of heat energy can be radiated due to the short exposure time to the heat source.

Heat Transfer from Rectangular Fins with a Circular Base (원형 베이스와 사각 휜 주위의 열전달 해석)

  • Yu, Seung-Hwan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.467-472
    • /
    • 2011
  • The heat transfer over a radial heat sink, adapted for LED (light emitting diode) downlights, was experimentally and analytically investigated. We added radiation heat transfer into a previous calculation that neglected this factor. The numerical results agreed well with experimental results. Parametric studies were performed to compare the effects of the geometric parameters (fin length, fin height, ideal number of fins) and the operating parameter (heat flux) on the average heat-sink temperature from the heat-sink array. We found the fin length that maximizes the heattransfer performance. As the emissivity increased, the effect of geometric parameters on the radiation heat transfer decreased.

Thermal Analysis of a Radial Heat Sink with Radiation and Natural Convection (복사 열전달을 고려한 자연대류 원형 히트싱크 열전달 해석)

  • Yu, Seung-Hwan;Jang, Dae-Seok;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.385-390
    • /
    • 2012
  • A radial heat sink, adopted to LED(light emitting diode) downlight, was optimized. Discrete transfer radiation model (DTRM) was used to calculate radiation heat transfer, and numerical model was verified with experimental results. The effects of number of fin, long fin length and middle fin length on overall thermal resistance and radiation heat transfer were analyzed. As the emissivity increased, thermal resistance decreased due to the increment of radiation heat transfer. The radial heat sink was optimized and optimum number of long fins is 19~28, optimum length of long fin is about half of radius of heat fink and optimum fin ratio is 0.4~0.7.