• Title/Summary/Keyword: Filtration-permeation

Search Result 70, Processing Time 0.022 seconds

Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zerovalent iron or magnetite nanoparticles

  • Dizge, Nadir;Ozay, Yasin;Simsek, U. Bulut;Gulsen, H. Elif;Akarsu, Ceyhun;Turabik, Meral;Unyayar, Ali;Ocakoglu, Kasim
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.51-71
    • /
    • 2017
  • Antimicrobial polyethersulfone ultrafiltration membranes containing zerovalent iron ($Fe^0$) and magnetite ($Fe_3O_4$) nanoparticles were synthesized via phase inversion method using polyethersulfone (PES) as membrane material and nano-iron as nanoparticle materials. Zerovalent iron nanoparticles (nZVI) were prepared by the reduction of iron ions with borohydride applying an inert atmosphere by using $N_2$ gases. The magnetite nanoparticles (nMag) were prepared via co-precipitation method by adding a base to an aqueous mixture of $Fe^{3+}$ and $Fe^{2+}$ salts. The synthesized nanoparticles were characterized by scanning electron microscopy, X-ray powder diffraction, and dynamic light scattering analysis. Moreover, the properties of the synthesized membranes were characterized by scanning electron microscopy energy dispersive X-ray spectroscopy and atomic force microscopy. The PES membranes containing the nZVI or nMag were examined for antimicrobial characteristics. Moreover, amount of iron run away from the PES composite membranes during the dead-end filtration were tested. The results showed that the permeation flux of the composite membranes was higher than the pristine PES membrane. The membranes containing nano-iron showed good antibacterial activity against gram-negative bacteria (Escherichia coli). The composite membranes can be successfully used for the domestic wastewater filtration to reduce membrane biofouling.

Ultrafiltration of oil-in-water emulsion: Analysis of fouling mechanism

  • Chakrabarty, B.;Ghoshal, A.K.;Purkait, M.K.
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.297-316
    • /
    • 2010
  • Membrane fouling is one of the major operational concerns of membrane processes which results in loss of productivity. This paper investigates the ultrafiltration (UF) results of synthetic oil-in-water (o/w) emulsion using flat sheets of polysulfone (PSf) membrane synthesized with four different compositions. The aim is to identify the mechanisms responsible for the observed permeate flux reduction with time for different PSf membranes. The experiments were carried out at four transmembrane pressures i.e., 68.9 kPa, 103.4 kPa, 137.9 kPa and 172.4 kPa. Three initial oil concentrations i.e., 75 $mgL^{-1}$, 100 $mgL^{-1}$ and 200 $mgL^{-1}$ were considered. The resistance-in-series (RIS) model was applied to interpret the data and on that basis, the individual resistances were evaluated. The significances of these resistances were studied in relation to parameters, namely, transmembrane pressure and initial oil concentration. The total resistance to permeate flow is found to increase with increase in both transmembrane pressure and initial oil concentration while for higher oil concentration, resistance due to concentration polarization is found to be the prevailing resistance. The applicability of the constant pressure filtration models to the experimental data was also tested to explain the blocking process. The study shows that intermediate pore blocking is the dominant mechanism at the initial period of UF while in the later period, the fouling process is found to approach cake filtration like mechanism. However, the duration of pore blocking mechanism is different for different membranes depending on their morphological and permeation properties.

Microfiltration Characteristics for Emulsified Oil in Water (에멀젼형 오일 수용액에 관한 정밀여과 특성)

  • ;;;Fane, Anthony G.
    • Membrane Journal
    • /
    • v.8 no.4
    • /
    • pp.203-209
    • /
    • 1998
  • The cutting oil emulsion microfiltration was carried out on dead-end call and crossflow systems equipped with 0.22 $\mu$m GVHP Millipore and 0.2 m stainless steel Mott microfiltration membranes, respectivdy. The oil drop size in the emulsion was varied from 0.07 to 0.22 $\mu$m. Cake filtration(CFM) and standard pore blocking models(SPBM) were applied to predict the permeation flux. The permeation fluxes of 0.01 vol% oil emulsion followed CFM for dead-end system very well under the condition of 400 rpm and below 100 kPa. The SPBM was, however, suitable for the permeation flux at 400 rpm and above 150 kPa. The oil layer on the membrane surface was destroyed and reproduced repeatedly as operating pressure was suddenly changed from 60 to 200 kPa, and then returned to 60 kPa. Also, we estimated the critical entry pressure(CEP) which is changed from CFM to SPBM, and CEP for dead-end system was around 100 kPa. The CEP increased from around 100 to 150 kPa for the crossflow system as the oil concentration increased from 0.01 to 0.03 vol% when Reynolds number was 7080.

  • PDF

Development of blend membrane by sulfonated polyethersulfone for whey ultrafiltration

  • Esfandian, Fatemeh;Peyravi, Majid;Qoreyshi, Ali Asqar;Jahanshahi, Mohsen
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.155-173
    • /
    • 2016
  • The present work has been focused on the development of polysulfone (PSf) ultrafiltration membrane via blending by sulfonated polyethersulfone (SPES) in order to permeability enhancement for ultrafiltration of cheese whey. In this regards, sulfonation of polyethersulfone was carried out and the degree of sulfonation was estimated. The effect of blend ratio on morphology, porosity, permeation and fouling of PSf / SPES membranes was investigated. Filtration experiments of whey were conducted for separation of macromolecules and proteins from the lactose enrichment phase. The morphology and performance of membranes were evaluated using different techniques such SEM, AFM, and contact angle measurements. The contact angle measurement showed that the hydrophilicity of membrane was increased by adding SPES. According to AFM images, PSf / SPES membranes exhibited lower roughness compared to neat PSf membrane. The water and whey flux of these membranes were higher than neat membrane. However, flux was decreased when the PSf / SPES blend ratio was 0/100. It can be attributed to pore size and morphology changes. Further, fouling parameters of PSf membrane were improved after blending. The blend membranes show a great potential to be used practically in proteins separation from cheese whey.

Lignin fractionation from waste wood using organosolv treatment combined with membrane filtration

  • Cho, Hyun Uk;Lee, Minjeong;Shin, Jingyeong;Kim, Eun-Sik;Kim, Young Mo
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • The purpose of this study was to investigate the characteristics of lignin fractionated from waste wood (WW) using a two-step process of ethanol organosolv pretreatment followed by ultrafiltration with membranes of different molecular weight cut-offs (1, 5 and 20 kDa). The different permeates obtained were characterized by fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and gel permeation chromatography (GPC). The analysis by FT-IR and NMR of these lignins showed that the lignin core was successfully separated from WW. TGA curves confirmed that the thermal properties of lignin fractionated by ultrafiltration were almost identical to each other. The results from GPC confirmed that fractionating of lignin was achieved by ultrafiltration. For the membrane fractionation process, values of molecular weight decreased as the cut-offs used to obtain the fractions became smaller. As a result, fractionating lignin by a two-step process allowed separating different fractions of lignin of different molecular weights yielded high purity without interference from existing pollutants in WW. The two-step process offers the possibility of using fractionated WW as an untapped source of lignin.

Development Trend of Membrane Filter Using Ceramic Fibers (세라믹 섬유를 이용한 멤브레인 필터의 연구개발 동향)

  • Kim, Deuk Ju;Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.87-96
    • /
    • 2016
  • Ceramic materials have attracted increasing attention in the last 10 years because of their high thermal stability and high permeation property compared with polymeric nanofiber membranes. Recently, novel nanofiber ceramic membranes with high porosity and flux have been fabricated from metal oxide nanofibers. To improve the performance of ceramic membranes and reduce their costs, a new ceramic membrane with a selective separation layer made of nanofibers was fabricated by electrospinning process and modification process for filtration system. This review summarizes the research trends for the development of ceramic nanofiber membrane over the past few years.

The Study on Water Permeation Improvement of Disulfonated Poly(Arylene Ether Sulfone) Random Copolymers with High Free Volume (높은 자유부피를 가지는 Disulfonated poly(arylene ether sulfone) 랜덤 공중합체의 수투과도 향상에 관한 연구)

  • Kang, Seungkyu;Hwang, Kyungho
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.352-358
    • /
    • 2012
  • In this study, we found structure-property relationship for pressure retarded osmosis (PRO) membrane, between BPS-XX and BisA-XX having similar structure but different free volume. And this comparison was subdivided by controlling its sulfonation degree. BPS-XX and BisA-XX were prepared via a polycondensation reaction. The degree of sulfonation were 20 to 60 mol.%. And they were fabricated to membrane. Characteristics were analyzed to verify of free volume. And the results showed that increase of free volume normally lead to increase permeability and decrease selectivity in equivalent molecule structure. Finally, in the permeability-selectivity results, we conclude high permeability and selectivity membrane can be prepared by controlling molecular structure and free volume.

Isolation and Partial Characterization of a Polysaccharide with Antithrombin Activity against Blood Coagulation in Manda®, a Fermented Natural Food

  • Kim, Dong Chung;Okuda, Hiromichi;Hwang, Woo Ik;Jung, Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.235-239
    • /
    • 2000
  • A polysaccharide with antithrombin activity in Manda$^{(R)}& (PAM) was purified via procedures comprising three major steps, i.e. fractional precipitation with ethanol, anion exchange chromatography, and gel permeation chromatography. PAM showed a symmetrical peak on size exclusion HPLC, as assessed by refractive index, and behaved as a single band on cellulose acetate electrophoresis. The average molecular mass was estimated to be 222 kDa by gel filtration. PAM was found to be a sulfated heteropolysaccharide that contains sulfate group (20.5%, w/w) and uronic acid moiety (7.1 %, w/w) in addition to neutral sugar consisting of fucose, xylose, mannose, galactose, and glucose in a molar ratio of 1.00 : 0.35 : 0.28: 0.22 : 0.15. This polysaccharide appeared to inhibit blood coagulation via the intrinsic pathway in a dose-dependent pattern. The clotting of fibrinogen by thrombin was also significantly mitigated by the presence of PAM.

  • PDF

Antioxidant Effects of Carnosine Extracted from the Eel Anguilla japonica (뱀장어 Anguilla japonica 추출 Carnosine의 항산화 효과)

  • Lee, Keun-Tae;Song, Ho-Su;Park, Seong-Min
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.4
    • /
    • pp.193-200
    • /
    • 2007
  • Ion-exchange chromatography and ultra-filtration permeation were used to extract carnosine from the eel Anguilla japonica. In an investigation of its antioxidant properties, the eel carnosine prevented lipid peroxidation in linoleic acid systems, scavenged free radicals, and exhibited superoxide dismutase-like activity. These activities increased as the carnosine concentration increased. The nitrite scavenging effects (NSEs) of commercial carnosine and the eel carnosine were measured at various acidic pHs (1.2, 3.0, and 4.2). For both types of carnosine, the maximum NSE was observed at pH 1.2. At this pH, the NSE of the eel carnosine was 65.3%. Both types of carnosine were effective at maintaining reasonably good color of ground beef patties over 5 days of storage at $4^{\circ}C$ and inhibited metmyoglobin formation as well as lipid peroxidation. These data suggest that the eel carnosine might be useful as a "natural" antioxidant in commercial production and storage of muscle foodstuffs.

Effects of Polymer Material and Solvent Properties on the Performance of Organic Solvent Nanofiltration Membranes (고분자 소재와 용매특성에 따른 유기용매 나노여과막 성능 분석)

  • Choi, JiHyun;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2022
  • In this work, the solvent permeation and separation performance of organic solvent nanofiltration (OSN) membranes were evaluated. Particularly, the PuraMem (PM) series developed for nonpolar solvents were analyzed and tested in dead-end filtration system. PM membranes exhibited higher permeance for nonpolar solvents compared to polar solvents, and their rejection data did not follow conventional trends with respect to solute size. The data showed that simple solution-diffusion model is not suitable to describe the OSN membrane behavior, and a better solvent-solute-membrane interaction parameter must be developed.