• Title/Summary/Keyword: Filtration rate

Search Result 714, Processing Time 0.024 seconds

Improvement of Virus Safety of an Antihemophilc Factor IX by Virus Filtration Process

  • Kim, In-Seop;Choi, Yong-Woon;Kang, Yong;Sung, Hark-Mo;Sohn, Ki-Whan;Kim, Yong-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1317-1325
    • /
    • 2008
  • Viral safety is an important prerequisite for clinical preparations of plasma-derived pharmaceuticals. One potential way to increase the safety of therapeutic biological products is the use of a virus-retentive filter. In order to increase the viral safety of human antihemophilic factor IX, particularly in regard to non-enveloped viruses, a virus removal process using a polyvinylidene fluoride membrane filter (Viresolve NFP) has been optimized. The most critical factor affecting the filtration efficiency was operating pH and the optimum pH was 6 or 7. Flow rate increased with increasing operating pressure and temperature. Recovery yield in the optimized production-scale process was 96%. No substantial changes were observed in the physical and biochemical characteristics of the filtered factor IX in comparison with those before filtration. A 47-mm disk membrane filter was used to simulate the process performance of the production-scale cartridges and to test if it could remove several experimental model viruses for human pathogenic viruses, including human hepatitis A virus (HAV), porcine parvovirus (PPV), murine encephalomyocarditis virus (EMCV), human immunodeficiency virus type 1 (HIV), bovine viral diarrhea virus (BVDV), and bovine herpes virus (BHV). Non-enveloped viruses (HAV, PPV, and EMCV) as well as enveloped viruses (HIV, BVDV, and BHV) were completely removed during filtration. The log reduction factors achieved were $\geq$6.12 for HAV, $\geq$4.28 for PPV, $\geq$5.33 for EMCV, $\geq$5.51 for HIV, $\geq$5.17 for BVDV, and $\geq$5.75 for BHV. These results indicate that the virus filtration process successfully improved the viral safety of factor IX.

A Study of Dewatering and Filtration on Woven Geotextile Tube (직포 지오텍스타일 튜브의 여과와 탈수에 대한 연구)

  • Kim, Tae-Hyung;Jung, Soo-Jung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.31-37
    • /
    • 2006
  • The purposes of this paper are to study the use possibility of geotextile tubes for dewatering of high water content sludges and sediments and to evaluate affecting factors on dewatering. To do this, pressure filtration tests are conducted on four high water content materials with two geotextiles under two filtration pressures. Based on the test results, although woven geotextile tubes are not satisfied the soil retention criteria used in filter design commonly, a great portion of fines are retained by filter cake formation on geotextile tube's upstream side, but also after formation of filter cake, the permeability drops sharply. Higher filtration pressure tends to increase dewatering rate, but has very little effect on filtration efficiency. Dewatering capacity is affected by several factors which are related to the geotextile, but the property of sludge appears to be the dominant control factor for dewatering efficiency.

  • PDF

Back Flushing Behavior of Microfiltration Membrane Fouled by Alumna Colloidal Suspensions (알루미나 현탁액에 의해 오염된 정밀여과막의 역세척 거동)

  • Nam, Suk-Tae;Han, Myeong-Jin
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.34-46
    • /
    • 2009
  • Effect of backflushing on the membrane fouling for polyethylene capillary membranes was examined by measuring the flux of $Al_2O_3$ colloidal suspensions through the cross flow microfiltration. In the comparison of with and without the application of backflushing, the hydraulic resistance to permeate flow of the suspension was less with backfluslng, but the Increasing rate in permeate resistance was higher. Regardless of backflushing, the cake filtration was dominant at the initial period of filtration with backflushing, being followed by the pore blocking. And at steady state, the fouling mechanism is almost governed by the cake filtration model. On the contrary, the pore blocking preceded the cake filtration in the initial stage of the original membrane before backflushing. And irrespective of backflushing, the ratio of cake filtration to total fouling increased, compared with that fur before backflushing. For the membrane with $0.24{\mu}m$ pore size, the permeate resistance was higher than that of $0.34{\mu}m$ pore size membrane. but the ratio of cake filtration was smaller than that of large pore membrane. In comparing the ratio of each fouling component to the total fouling for the case with backflushing pore blocking was 7.8% and cake filtration was 92.2%. for the case without backflushing, total fouling was composed of 9.6% pore blocking and 90.4% cake filtration.

The Performance of Pollutant Removal Using Nonpoint Treatment Filtration Device and Analysis of the Filter Backwashing Effect (여과형 비점오염 처리장치의 오염물질 제거특성 및 역세척 분석)

  • Lee, Jun-ho;Yang, Seung-ho;Bang, Ki-woong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.523-532
    • /
    • 2015
  • Hydrocyclone is widely used in industry, for its simple design, high capacity, low maintenance and low operational cost. The objective of this study is to develop hydrocyclone coagulation and filtration system. The system is made of hydrocyclone ballasted coagulation with polyaluminium chloride silicate (PACS) and upflow filter to treat micro particles in urban storm runoff. Roadside sediment particles (< $200{\mu}m$) was mixed with tap water to make various turbid suspensions to simulate urban storm runoff. The filter cartridge was filled with polyethylene media system and ran 1hr per everyday and total operation time were 8.19hrs and backwashing everyday after end of operation. The operation condition of flowrate was $8.2{\sim}11.9m^3/day$ (mean $10.1m^3/day$) and surface overflow rate (SOR) based on filter surface area was $45.5{\sim}65.9m^3/m^2/day$ (mean $55.7m^3/m^2/day$). The range of PACS dosage concentration was 14.0~31.5 mg/L. As the results of operation, the range of removal efficiency of turbidity, SS were 81.0~95.8% (mean 89.5%) 81.8~99.0% (mean 91.4%), respectively. An increase of filtration basin retention time brought on increased of removal efficiency of turbidity and SS, and increase of SOR brought on decreased of removal efficiency. During the first flush in urban area, storm runoff have an high concentration of SS (200~600 mg/L) and the filtration bed becomes clogged and decreased of removal efficiency. Backwashing begins when the drainage pipe valve at the filtration tank bottom is completely open (backwashing stage 1). Backwashing stage 2 was using air bubbles and water jet washing the media for 5 mins and open the drainage valve. After backwashing stage 1, 2, 61.83~64.04%, 18.53~27.51% of SS loading was discharged from filtration tank, respectively. Discharged SS loading from effluent was 7.12~14.79% and the range of residual SS loading in fliter was 2.26~5.00%. The backwashing effects for turbidity, SS were 89.5%, 91.4%, respectively. The hydrocyclone coagulation and filtration with backwashing system, which came out to solve the problems of the costly exchange filter media, and low efficiency of removing micro particles of filter type nonpoint treatment devices, is considered as an alternative system.

Characterization of Fine Dust Collection Using a Filter Ventilation (환기장치와 필터를 활용한 미세먼지 제거특성 조사)

  • Jeon, Tae-Yeong;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.229-233
    • /
    • 2015
  • In this study, we examined the removal characteristics of suspended particulate matters which are one of carcinogens to cause lung cancer. The fine dust capture by a pilot scale filtration system depends on several important variables such as humidity, initial fine dust injection volume, and flow rate. The average concentration of particulate matters in the test chamber decreased, but the ultimate collection efficiency did not change during the filtration under high humidity, compared to those of using ambient conditions The initial injection amount of fine dust did not influence the particle capturing efficiency. When the flow rate reduced from 0.6 m/s to 0.3 m/s, the dust collection time increased approximately 1.4 times. Among all variables tested, the flow rate showed the most significant effect on the removal efficiency of fine particulate matter.

Influence of Intraventricular Ouabain on the Renal Function of the Rabbit (가토(家兎) 신장기능(腎臟機能)에 미치는 측뇌실내(側腦室內) Ouabain의 영향(影響))

  • Lee, Shin-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.31-44
    • /
    • 1976
  • It has been reported that many of the effects of digitalis glycosides could be mediated partly through the central nervous system. In this study the effects of ouabain given directly into the lateral ventricle of the brain on the renal function of the rabbit were investigated. Intraventricular ouabain elicited antidiuresis in doses ranging from 0.1 to $3\;{\mu}g$, exhibiting a rough dose-response relationship, and decreased the renal plasma flow, glomerular filtration rate and urinary excretion of sodium and potassium, concomitant with the decrease of urine flow. These decreases in urine flow, excretory rate of electrolytes significantly correlated with the decrease in renal plasma flow or glomerular filtration rate, suggesting that the antidiuresis might have been induced by the hemodynamic changes. Intravenous ouabain in a dose of $1\;{\mu}g$ did not affect the renal function. Systemic blood pressure as well as cardiac activity was not affected by the intraventricular ouabain. Effects of the intraventricular ouabain on renal function were abolished by the intravenous phentolamine-pretreatment but not affected by intraventricular phentolamine-pretreatment. Neither vasopressin infusion nor hydration did affect the renal effects of intraventricular ouabain. From these observations, it is suggested that the antidiuresis of intraventricular ouabain is induced by the increased sympathetic influence to the kidney.

  • PDF

Analysis of Membrane Integrity and Removal Efficiency Considering Membrane Defect and Pore Size (막 파단 및 공극크기에 따른 막 완결성 및 제거효율 분석)

  • Hur, Hyun-chul;Rhee, Ok-jae;Lee, Kwang-jae;Kim, Kwang-ho;Choi, Young-june;Lee, Joo-hee;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.423-429
    • /
    • 2008
  • Microfiltration (MF) and ultrafiltration (UF) processes for removal of particulate materials (i.e., turbidity, microorganisms and viruses) have been used to produce drinking water with higher quality. As membrane filtration technique has become widely applied for drinking water treatment, the importance of membrane integrity test (MIT) has also been increasingly emphasized. The results of pressure decay test (PDT) were presented in the paper to monitor membrane integrity. In this paper the PDT was carried out with deliberately-defected membrane fibers to evaluate the sensitivity of PDT on membrane fiber damage. Variation of pressure decay rate and removal rate were investigated to evaluate the impact of defection (defection ratio) and pore size of membrane. The membrane integrity could be successfully monitored by the PDT. The pressure decay rate varied from $0.002{\sim}0.189kg_f/cm^2hr$ with the initial pressure ranged from 0.2 to $1.0kg_f/cm^2hr$. Higher initial pressure which provided with higher pressure decay rate was preferred to evaluate the defection of membrane fiber. As for the particle removal rate, the Log Removal Rate (LRV) of kaolin solution decreased significantly from 3.78 to 2.31 when one fiber out of 3,200 fibers was cut. The membranes with different pore size were tested to evaluate virus removal efficiency. The virus removal rate of the MF membrane ($0.1{\mu}m$) was about 30% although the poliovirus was smaller than the pore size of the MF membrane, indicating that the removal rate was much lower than Korea Water Works Association (KWWA) certificate LRV of 1.5.

The Infiltration Velocity of a Sewage Disposal System with Water Plant and Gravel Bed (수초·골재 하수처리장의 투수속도)

  • Chung, Dong Yang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.29-34
    • /
    • 2003
  • This paper describes the effects of sewage amount, temperature, and years in operation on the infiltration rate of a sewage disposal system. The self-purifying sewage disposal system, which is typically used in rural areas, consists of reeds and fine gravel. Water plants are planted on the gravel bed which provides the habitat for microbes. The basic process is that the gravel bed filters incoming sewage. Thus this system requires the smooth flow of sewage through the gravel. However, the efficiency of the disposal system will be lowered if the gravel bed is clogged with sewage sludge. A three year study shows that infiltration rate slows down significantly until the 7th day, depending on the sewage amount and the temperature. After the 7th day, the infiltration rate remains almost constant. In addition, the infiltration rate decreases as the temperature falls. It also decreases as the number of years in operation increase. But there is no significant change in the infiltration rate after the 7th day, independent of the temperature, the sewage amount, and years in operation. In order to take advantage of high infiltration rate, which improves the efficiency of the disposal system in its early stages, having two gravel beds and using them alternatively will be efficient. This operation method is called intermittent load and makes the disposal system last longer. The water plant roots above the gravel bed make the effective filtration possible because they delay accumulation of the sewage sludge and stabilize the filtration ability.

Filtration of Red Tide Dinoflagellates by an Intertidal Bivalve, Glauconome chinensis Gray: An Implication for the Potentials of Bivalves in Tidal Flats

  • Lee Chang-Hoon;Song Jae Yoon;Chung Ee-Yung
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.2
    • /
    • pp.66-73
    • /
    • 2003
  • To understand the physiology of a suspension-feeding bivalve and its potential impacts on the dynamics of red tides on tidal flats, rates of clearance and ingestion of Glauconome chinensis were measured as a function of algal concentration, when the bivalve was fed on a nontoxic strain of red tide dinoflagellate Prorocentrum minimum, Cochlodinium polykrikoides or Scrippsiella trochoidea. With increasing algal concentration, weight-specific clearance rate increased rapidly at lower concentrations and after reaching the maximum at ca. 0.2 to 1.0 mgC/L, it decreased at higher concentrations. Maximum clearance rate was nearly equal for different algal species and ranged between 2.1 and 2.6 L/g/hr. Weight-specific ingestion rate also increased at lower algal concentrations but saturated at higher concentrations. Maximum ingestion rate was 2 to 10 fold different with different algal species: S. trochoidea (10.1 mgC/g/hr), P. minimum (3.9 mgC/g/hr), and C. polykrikoides (0.99 mgC/g/hr). Nitrogen and protein content showed that S. trochoidea is the best among the tested three red tide dinoflagellates. The maximum filtration capacity, calculated by combining the data on ingestion rate from laboratory experiments and those from the field for the density of the bivalve and the red tide dinoflagellates was 4.7, 1.4, and 25.3 tons/m2/day for P. minimum, C. polykrikoides, and S. trochoidea, respectively. It is hypothesized that the abundant suspension-feeding bivalves in tidal flats can effectively mitigate the outbreak of red tides.

Glomerular Filtration Rate Test Methods and Guidelines (Glomerular Filtration Rate 검사방법 및 가이드라인)

  • Park, Min-Ho;Lee, Ha-Young;Ryu, Hwa-Jin;Yoo, Tae-Min;Noh, Gyeong-Woon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.97-100
    • /
    • 2018
  • Purpose The glomerular filtration rate (GFR) test is an important indicator of glomerular filtration and has been used to test renal function and the extent of its function. The GFR test is performed by intravenous injection of radioactive medicines made of $^{51}Cr$-EDTA, and blood concentration is measured by taking blood according to the elapsed time. also, PET-CT, bone scan, transfusion and so on will affect the outcome. Therefore, we will improve the quality of the test by providing guidelines for the GFR test for more accurate testing. Materials and Methods 5 mL of physiological saline solution and 2 mL of $^{51}Cr$-EDTA solution are used to make 5 mL of the radiopharmaceutical solution to be injected into the patient. First, the syringe weight is measured before the injection, and then the radioactive medicine is injected into the patient's vein and the syringe weight is measured after the injection. Blood sampling is performed twice in total. In adults, blood is collected 3 hours / 5 hours after injection and in children 2 hours / 5 hours after injection. The blood sample is centrifuged at 3300 rpm for 5 minutes. Standard solution is prepared by filling diluent water up to the scale indicated in the 200-mL volumetric flask, discarding $500{\mu}L$, injecting $500{\mu}L$ of GFR reagent and mixing well. $500{\mu}L$ each of the standard solution is dispensed into two test tubes, and $500{\mu}L$ of each of the plasma samples collected in time is dispensed into two test tubes and measured with a Cobra Counter. Results At present, the reference range applied in this study is $119.5{\pm}30.3ml/min/1.73m2$ for males and $125.2{\pm}28.2ml/min/1.73m^2$ for females. Conclusion The GFR test is conducted using radioactive medical products. GFR testing is performed as a scheduled test, but PET-CT, dialysis and transfusion, which may affect GFR testing, may be scheduled during GFR testing. Therefore, we could get accurate GFR test results by notifying the ward and department beforehand when booking.