Browse > Article

The Infiltration Velocity of a Sewage Disposal System with Water Plant and Gravel Bed  

Chung, Dong Yang (Dept. of Technology Education, Korea National University of Education)
Publication Information
Journal of the Korean Society of Environmental Restoration Technology / v.6, no.3, 2003 , pp. 29-34 More about this Journal
Abstract
This paper describes the effects of sewage amount, temperature, and years in operation on the infiltration rate of a sewage disposal system. The self-purifying sewage disposal system, which is typically used in rural areas, consists of reeds and fine gravel. Water plants are planted on the gravel bed which provides the habitat for microbes. The basic process is that the gravel bed filters incoming sewage. Thus this system requires the smooth flow of sewage through the gravel. However, the efficiency of the disposal system will be lowered if the gravel bed is clogged with sewage sludge. A three year study shows that infiltration rate slows down significantly until the 7th day, depending on the sewage amount and the temperature. After the 7th day, the infiltration rate remains almost constant. In addition, the infiltration rate decreases as the temperature falls. It also decreases as the number of years in operation increase. But there is no significant change in the infiltration rate after the 7th day, independent of the temperature, the sewage amount, and years in operation. In order to take advantage of high infiltration rate, which improves the efficiency of the disposal system in its early stages, having two gravel beds and using them alternatively will be efficient. This operation method is called intermittent load and makes the disposal system last longer. The water plant roots above the gravel bed make the effective filtration possible because they delay accumulation of the sewage sludge and stabilize the filtration ability.
Keywords
Sewerage; Water plant; Pore clogging; Infiltration rate; Self-purifying;
Citations & Related Records
연도 인용수 순위
  • Reference