International journal of advanced smart convergence
/
v.7
no.3
/
pp.101-109
/
2018
In this paper, we propose an adaptive filtering scheme of connection requests for the defense of malicious energy consumption attacks against wireless computing devices with limited energy budget. The energy consumption attack tries to consume the battery energy of a wireless device with repeated connection requests and shut down the wireless device by exhausting its energy budget. The proposed scheme blocks a connection request of the energy consumption attack in the middle, if the same connection request is repeated and its request result is failed continuously. In order to avoid the blocking of innocuous mistakes of normal users, the scheme gives another chance to allow connection request after a fixed blocking time. The scheme changes the blocking time adaptively by comparing the message arriving ate during non-blocking period and that during blocking period. Evaluation shows that the proposed defense scheme saves up to 94% energy consumption compared to the non-defense case.
Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
Journal of Sensor Science and Technology
/
v.28
no.3
/
pp.146-151
/
2019
This paper reports a sliding window filtering approach for ground moving targets with cross-correlated sensor noise and uncertainty. In addition, the effect of uncertain parameters during a tracking error on the model performance is considered. A distributed fusion sliding window filter is also proposed. The distributed fusion filtering algorithm represents the optimal linear combination of local filters under the minimum mean-square error criterion. The derivation of the error cross-covariances between the local sliding window filters is the key to the proposed method. Simulation results of the motion of the ground moving target a demonstrate high accuracy and computational efficiency of the distributed fusion sliding window filter.
In this study, we examine the applicability of an artificial neural network(ANN) for filtering underwater random noise and for identifying underlying signals taken from noisy environment. The approach is to find a way of compressing the input data and then decompressing it using an ANN as in image compressing process. It is well known that random signal is hard to compress while ordered information is not. The use of a limited number of processing elements(PEs) in the hidden layer of an Ann ensures that some of the noise would be removed in the reconstruction process. Two types of the signals, synthesized and measured, are used to examine the effectiveness of the ANN-based filter. After training process is completed, the ANN successfully extracts the underlying signals form the synthesized or measured noisy signals. In particular, compared with the results form without filtering or moving averaged, the ANN-based filter gives much better spectrograms to identify underlying signals from the measured noisy data. This filtering process is achieved without using and kind of highly accurate signal processing technique. More experimentation needs to be followed to develop the ANN-based filtering technique to the level of complete understanding.
Journal of the Korea Institute of Military Science and Technology
/
v.19
no.4
/
pp.500-507
/
2016
In order to increase the survivability of combatant ship, measuring and analyzing the infrared radiation is important. Consequently, providing analysis report is also important for the progress of the new combatant ship design. This paper proposes a design and software implementation of filtering for the noise reduction of mid-wave IR camera image. We reduced the total test cost by using the suggested software filtering technique instead of hardware replacement or re-calibration. In addition, we enhanced the accuracy of analysis results by adjusting the parameters of software filtering according to the results of filtered image.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
v.1
/
pp.491-494
/
2006
Kalman filtering (KF) is hard to be applied to the SINS (Strap-down Inertial Navigation System)/RDSS (Radio Determination Satellite Service) integrated navigation system directly because the time delay of RDSS positioning in active mode is random. BP (Back-Propagation) Neuron computing as a powerful technology of Artificial Neural Network (ANN), is appropriate to solve nonlinear problems such as the random time delay of RDSS without prior knowledge about the mathematical process involved. The new algorithm betakes a BP neural network (BPNN) and velocity feedback to aid KF in order to overcome the time delay of RDSS positioning. Once the BP neural network was trained and converged, the new approach will work well for SINS/RDSS integrated navigation. Dynamic vehicle experiments were performed to evaluate the performance of the system. The experiment results demonstrate that the horizontal positioning accuracy of the new approach is 40.62 m (1 ${\sigma}$), which is better than velocity-feedback-based KF. The experimental results also show that the horizontal positioning error of the navigation system is almost linear to the positioning interval of RDSS within 5 minutes. The approach and its anti-jamming analysis will be helpful to the applications of SINS/RDSS integrated systems.
A High-degree Cubature Kalman Filter (CKF) is proposed to deal with the Strapdown Inertial Navigation System (SDINS) alignment problem. In-flight Alignment (IFA) is an effective method to compensate for attitude errors of the navigation system. While providing precise attitude error compensation, however, the external source aided alignment often creates a nonlinear filtering problem caused by a large misalignment angle. Introduced recently, Cubature Kalman Filter is a suitable technique for various nonlinear problems. In this paper, a higher degree CKF is applied to this accuracy-is-everything SDINS IFA problem. The simulation results show that the proposed technique outperformed a traditional nonlinear filter in terms of precision and alignment time.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.11
/
pp.4170-4188
/
2014
In this study, we present a denoising algorithm for high-frame-rate videos in an ultra-low illumination environment on the basis of Kalman filtering model and a new motion segmentation scheme. The Kalman filter removes temporal noise from signals by propagating error covariance statistics. Regarded as the process noise for imaging, motion is important in Kalman filtering. We propose a new motion estimation scheme that is suitable for serious noise. This scheme employs the small motion vector characteristic of high-frame-rate videos. Small changing patches are intentionally neglected because distinguishing details from large-scale noise is difficult and unimportant. Finally, a spatial bilateral filter is used to improve denoising capability in the motion area. Experiments are performed on videos with both synthetic and real noises. Results show that the proposed algorithm outperforms other state-of-the-art methods in both peak signal-to-noise ratio objective evaluation and visual quality.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2003.05a
/
pp.745-748
/
2003
HLA-RTI is Middleware for the distribute simulation that developed in the US Department of Defense. This provides fast accomplishment speed and reliability than distribute simulation Middleware by transfer. However, DDM(Data Distribution Management) service is used as data filtering technology in the existing HLA-RTI. As for this, the problem that network traffic increases in data exchange between the mobility simulation objects is generated. it proposes applying agent technology to the mobility simulation object in order to solve these problems in this paper in this. And this paper applies that to practical simulation and analyzes performance between each data filtering technology with comparison.
The development of information communication and artificial intelligence technology requires the intelligent command and control (C2) system for Korean military, and various studies are attempted to achieve it. In particular, as a volume ofinformation in the C2 workflow increases exponentially, this study pays attention to the collaborative filtering (CF) and recommendation systems (RS) that can provide the essential information for the users of the C2 system has been developed. The RS performing information filtering in the C2 system should provide an explanatory recommendation and consider the context of the tasks and users. In this paper, we propose a contextual pre-filtering CARS framework that recommends information in the C2 workflow. The proposed framework consists of four components: 1) contextual pre-filtering that filters data in advance based on the context and relationship of the users, 2) feature selection to overcome the data sparseness that is a weak point for the CF, 3) the proposed CF with the features distances between the users used to calculate user similarity, and 4) rule-based post filtering to reflect user preferences. In order to evaluate the superiority of this study, various distance methods of the existing CF method were compared to the proposed framework with two experimental datasets in real-world. As a result of comparative experiments, it was shown that the proposed framework was superior in terms of MAE, MSE, and MSLE.
Ha, Jong-Soo;Lee, Eui-Hyuk;Lee, Hyun-Ah;Park, Gyu-Churl;Cho, Kyu-Gong
Journal of the Korea Institute of Military Science and Technology
/
v.17
no.3
/
pp.350-357
/
2014
MRDS is a short range missile/rocket defense system which protects a main battle tank(MBT) from threats at a short range. It is composed of 2 radars, 2 infrared trackers(IRT)s, 1 fire control computer(FCC), 2 launchers and countermeasures. In this paper, the radar and the IRT models based on sensing errors, the FCC model based on filtering errors, the launcher model based on driving errors and the countermeasure model based on flying errors are proposed to analyze the defense performance with the approaching RPG-7 and the moving MBT. The simulation results are presented to evaluate and verify the effectiveness of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.