• Title/Summary/Keyword: Filter convergence

Search Result 899, Processing Time 0.025 seconds

Optimization of Pose Estimation Model based on Genetic Algorithms for Anomaly Detection in Unmanned Stores (무인점포 이상행동 인식을 위한 유전 알고리즘 기반 자세 추정 모델 최적화)

  • Sang-Hyeop Lee;Jang-Sik Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.113-119
    • /
    • 2023
  • In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.

Smoothed RSSI-Based Distance Estimation Using Deep Neural Network (심층 인공신경망을 활용한 Smoothed RSSI 기반 거리 추정)

  • Hyeok-Don Kwon;Sol-Bee Lee;Jung-Hyok Kwon;Eui-Jik Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.71-76
    • /
    • 2023
  • In this paper, we propose a smoothed received signal strength indicator (RSSI)-based distance estimation using deep neural network (DNN) for accurate distance estimation in an environment where a single receiver is used. The proposed scheme performs a data preprocessing consisting of data splitting, missing value imputation, and smoothing steps to improve distance estimation accuracy, thereby deriving the smoothed RSSI values. The derived smoothed RSSI values are used as input data of the Multi-Input Single-Output (MISO) DNN model, and are finally returned as an estimated distance in the output layer through input layer and hidden layer. To verify the superiority of the proposed scheme, we compared the performance of the proposed scheme with that of the linear regression-based distance estimation scheme. As a result, the proposed scheme showed 29.09% higher distance estimation accuracy than the linear regression-based distance estimation scheme.

Optimal Design Space Exploration of Multi-core Architecture for Real-time Lane Detection Algorithm (실시간 차선인식 알고리즘을 위한 최적의 멀티코어 아키텍처 디자인 공간 탐색)

  • Jeong, Inkyu;Kim, Jongmyon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • This paper proposes a four-stage algorithm for detecting lanes on a driving car. In the first stage, it extracts region of interests in an image. In the second stage, it employs a median filter to remove noise. In the third stage, a binary algorithm is used to classify two classes of backgrond and foreground of an input image. Finally, an image erosion algorithm is utilized to obtain clear lanes by removing noises and edges remained after the binary process. However, the proposed lane detection algorithm requires high computational time. To address this issue, this paper presents a parallel implementation of a real-time line detection algorithm on a multi-core architecture. In addition, we implement and simulate 8 different processing element (PE) architectures to select an optimal PE architecture for the target application. Experimental results indicate that 40×40 PE architecture show the best performance, energy efficiency and area efficiency.

Research on Utilization of AI in the Media Industry: Focusing on Social Consensus of Pros and Cons in the Journalism Sector (미디어 산업 AI 활용성에 관한 고찰 : 저널리즘 분야 적용의 주요 쟁점을 중심으로)

  • Jeonghyeon Han;Hajin Yoo;Minjun Kang;Hanjin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.713-722
    • /
    • 2024
  • This study highlights the impact of Artificial Intelligence (AI) technology on journalism, discussing its utility and addressing major ethical concerns. Broadcasting companies and media institutions, such as the Bloomberg, Guardian, WSJ, WP, NYT, globally are utilizing AI for innovation in news production, data analysis, and content generation. Accordingly, the ecosystem of AI journalism will be analyzed in terms of scale, economic feasibility, diversity, and value enhancement of major media AI service types. Through the previous literature review, this study identifies key ethical and social issues in AI journalism as well. It aims to bridge societal and technological concerns by exploring mutual development directions for AI technology and the media industry. Additionally, it advocates for the necessity of integrated guidelines and advanced AI literacy through social consensus in addressing these issues.

Deep Recurrent Neural Network for Multiple Time Slot Frequency Spectrum Predictions of Cognitive Radio

  • Tang, Zhi-ling;Li, Si-min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3029-3045
    • /
    • 2017
  • The main processes of a cognitive radio system include spectrum sensing, spectrum decision, spectrum sharing, and spectrum conversion. Experimental results show that these stages introduce a time delay that affects the spectrum sensing accuracy, reducing its efficiency. To reduce the time delay, the frequency spectrum prediction was proposed to alleviate the burden on the spectrum sensing. In this paper, the deep recurrent neural network (DRNN) was proposed to predict the spectrum of multiple time slots, since the existing methods only predict the spectrum of one time slot. The continuous state of a channel is divided into a many time slots, forming a time series of the channel state. Since there are more hidden layers in the DRNN than in the RNN, the DRNN has fading memory in its bottom layer as well as in the past input. In addition, the extended Kalman filter was used to train the DRNN, which overcomes the problem of slow convergence and the vanishing gradient of the gradient descent method. The spectrum prediction based on the DRNN was verified with a WiFi signal, and the error of the prediction was analyzed. The simulation results proved that the multiple slot spectrum prediction improved the spectrum efficiency and reduced the energy consumption of spectrum sensing.

Damage Analysis of CCD Image Sensor Irradiated by Continuous Wave Laser (연속발진 레이저에 의한 CCD 영상센서의 손상 분석)

  • Yoon, Sunghee;Jhang, Kyung-Young;Shin, Wan-Soon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.690-697
    • /
    • 2016
  • EOIS(electro-optical imaging system) is the main target of the laser weapon. Specially, the image sensor will be vulnerable because EOIS focuses the incident laser beam onto the image sensor. Accordingly, the laser-induced damage of the image sensor needs to be identified for the counter-measure against the laser attack. In this study, the laser-induced damage of the CCD image sensor irradiated by the CW(continuous wave) NIR(near infrared) laser was experimentally investigated and mechanisms of those damage occurrences were analyzed. In the experiment, the near infrared CW fiber laser was used as a laser source. As the fluence, which is the product of the irradiance and the irradiation time, increased, the permanent damages such as discoloration and breakdown appeared sequentially. The discoloration occurred when the color filter was damaged and then the breakdown occurred when the photodiode and substrate were damaged. From the experimental results, LIDTs(laser-induced damage thresholds) of damages were roughly determined.

Three-Dimensional Automatic Target Recognition System Based on Optical Integral Imaging Reconstruction

  • Lee, Min-Chul;Inoue, Kotaro;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • In this paper, we present a three-dimensional (3-D) automatic target recognition system based on optical integral imaging reconstruction. In integral imaging, elemental images of the reference and target 3-D objects are obtained through a lenslet array or a camera array. Then, reconstructed 3-D images at various reconstruction depths can be optically generated on the output plane by back-projecting these elemental images onto a display panel. 3-D automatic target recognition can be implemented using computational integral imaging reconstruction and digital nonlinear correlation filters. However, these methods require non-trivial computation time for reconstruction and recognition. Instead, we implement 3-D automatic target recognition using optical cross-correlation between the reconstructed 3-D reference and target images at the same reconstruction depth. Our method depends on an all-optical structure to realize a real-time 3-D automatic target recognition system. In addition, we use a nonlinear correlation filter to improve recognition performance. To prove our proposed method, we carry out the optical experiments and report recognition results.

Edge Adaptive Color Interpolation for Ultra-Small HD-Grade CMOS Video Sensor in Camera Phones

  • Jang, Won-Woo;Kim, Joo-Hyun;Yang, Hoon-Gee;Lee, Gi-Dong;Kang, Bong-Soon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • This paper proposes an edge adaptive color interpolation for an ultra-small HD-grade complementary metal-oxide semiconductor (CMOS) video sensor in camera phones that can process 720-p/30-fps videos. Recently, proposed methods with great image quality perceptually reconstruct the green component and then estimate the red/blue component using the reconstructed green and neighbor red and blue pixels. However, these methods require the bulky memory line buffers in order to temporally store the reconstructed green components. The edge adaptive color interpolation method uses seven or nine patterns to calculate the six edge directions. At the same time, the threshold values are adaptively adjusted by the sum of the color values of the selected pixels. This method selects the suitable one among the patterns using two flowcharts proposed in this paper, and then interpolates the missing color values. For verification, we calculated the peak-signal-to-noise-ratio (PSNR) in the test images, which were processed by the proposed algorithm, and compared the calculated PSNR of the existing methods. The proposed color interpolation is also fabricated with the 0.18-${\mu}m$ CMOS flash memory process.

Digital Control of Low-Frequency Square-Wave Two-Stage Electronic Ballast for HID Lamps with Resonant Ignition and High Efficiency (공진 점등 기능과 효율 향상을 위한 HID 램프의 저주파수 구형파 2단 전자식 안정기)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.69-76
    • /
    • 2013
  • In this paper, electronic ballast using resonant inverter for HID lamp is designed and implemented. The proposed electronic ballast is used the soft switching technology ZVS(Zero Voltage Switching) to reduce turn-on and turn-off loss. The ignition of proposed electronic ballast is achieved by controlling a full bridge inverter which is consisted of LC filter for resonance. After ignition the ballast operates as a low frequency square wave inverter by controlling a full bridge inverter as a buck converter. After ignition at resonant frequency of $f_o$=160kHz, the switching frequency of a buck converter is consisted of 50kHz of high frequency and 170Hz of low frequency. This is for attenuating high frequency harmonics and avoiding acoustic resonance. The experimental results show that electronic ballast using resonant inverter is operated stably.

Recovering the Colors of Objects from Multiple Near-IR Images

  • Kim, Ari;Oh, In-Hoo;Kim, Hong-Suk;Park, Seung-Ok;Park, Youngsik
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.102-111
    • /
    • 2015
  • This paper proposes an algorithm for recovering the colors of objects from multiple near-infrared (near-IR) images. The International Commission on Illumination (CIE) color coordinates of objects are recovered from a series of gray images captured under multiple spectral near-IR illuminations using polynomial regression. The feasibility of the proposed algorithm is tested experimentally by using 24 color patches of the Color Rendition Chart. The experimental apparatus is composed of a monochrome digital camera without an IR cut-off filter and a custom-designed LED illuminator emitting multiple spectral near-IR illuminations, with peak wavelengths near the red edge of the visible band, namely at 700, 740, 780, and 860 nm. The average color difference between the original and the recovered colors for all 24 patches was found to be 11.1. However, if some particular patches with high value are disregarded, the average color difference is reduced to 4.2, and this value is within the acceptability tolerance for complex image on the display.