• Title/Summary/Keyword: Film thickness prediction formula

Search Result 3, Processing Time 0.021 seconds

A Study on Development and Verification of Prediction Formula for Realization of Standard Process for Hull Block Coating Method (선체 블록 도장방법 표준프로세스 구현을 위한 예측식 개발 및 검증에 관한 연구)

  • Kim, Dong-Kyun;Lee, Dong-Hoon;Kim, Ho-Kyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.637-645
    • /
    • 2008
  • It is very hard to control the quality of coating work in shipbuilding process, because it is highly affected by several parameters such as space between object and nozzle tip, spray velocity, pressure, tip size, etc.. Even so a coating work in shipbuilding is done by workers' experience and skill as yet. It causes not only an excessive use of paints but also a decrease of productivity. In order to solve this problem, we developed a formula that predicts the film thickness and determined the proper coating pattern. Also we had done a series of experiments to verify the results of this study.

A dryout mechanism model for rectangular narrow channels at high pressure conditions

  • Song, Gongle;Liang, Yu;Sun, Rulei;Zhang, Dalin;Deng, Jian;Su, G.H.;Tian, Wenxi;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2196-2203
    • /
    • 2020
  • A dryout mechanism model for rectangular narrow channels at high pressure conditions is developed by assuming that the Kelvin-Helmholtz instability triggered the occurrence of dryout. This model combines the advantages of theoretical analysis and empirical correlation. The unknown coefficients in the theoretical derivation are supported by the experimental data. Meanwhile, the decisive restriction of the experimental conditions on the applicability of the empirical correlation is avoided. The expression of vapor phase velocity at the time of dryout is derived, and the empirical correlation of liquid film thickness is introduced. Since the CHF value obtained from the liquid film thickness should be the same as the value obtained from the Kelvin-Helmholtz critical stability under the same condition, the convergent CHF value is obtained by iteratively calculating. Comparing with the experimental data under the pressure of 6.89-13.79 MPa, the average error of the model is -15.4% with the 95% confidence interval [-20.5%, -10.4%]. And the pressure has a decisive influence on the prediction accuracy of this model. Compared with the existing dryout code, the calculation speed of this model is faster, and the calculation accuracy is improved. This model, with great portability, could be applied to different objects and working conditions by changing the expression of the vapor phase velocity when the dryout phenomenon is triggered and the calculation formula of the liquid film.

A Generalized Model for the Prediction of Thermally-Induced CANDU Fuel Element Bowing (CANDU 핵연료봉의 열적 휨 모형 및 예측)

  • Suk, H.C.;Sim, K-S.;Park, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.811-824
    • /
    • 1995
  • The CANDU element bowing is attributed to actions of both the thermally induced bending moments and the bending moment due to hydraulic drag and mechanical loads, where the bowing is defined as the lateral deflection of an element from the axial centerline. This paper consider only the thermally-induced bending moments which are generated both within the sheath and the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element The generalized and explicit analytical formula for the thermally-induced bending is presented in con-sideration of 1) bending of an empty tube treated by neglecting the fuel/sheath mechanical interaction and 2) fuel/sheath interaction due to the pellet and sheath temperature variations, where in each case the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. As the results of the sensitivity calculations of the element bowing with the variations of the parameters in the formula, it is found that the element bowing is greatly affected relatively with the variations or changes of element length, sheath inside diameter, average coolant temperature and its variation factor, pellet/sheath mechanical interaction factor, neutron flux depression factor, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient and sheath and pellet thermal conductivities.

  • PDF