• Title/Summary/Keyword: Film major

Search Result 536, Processing Time 0.023 seconds

An Analysis of Elastohydrodynamic Lubrication of Elliptical Contacts:Part I (타원접촉의 탄성유체윤활해석:제1보)

  • 박태조;현준수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.212-218
    • /
    • 1998
  • This paper presents a study of the elastohydrodynamic lubrication of elliptical contacts where lubricant entrainment coincides with the major axis of the Hertzian contact ellipse. A finite difference method and the Newton-Raphson method are applied to analyze the problem. Film contours and pressure distributions are compared with the results for lubricant entrainment coincides with the minor axis. Variations of the minimum and central film thicknesses with the radius ratio are also examined. Therefore, the present numerical scheme can be used generally in the analysis of the EHL of elliptical contacts where the lubricant entraining vector did not coincide with either of the principal axis of the conjunction.

  • PDF

Trend and Prospect of Thin Film Processing Technology (박막제조 기술의 동향과 전망)

  • Jeong, Jae-In;Yang, Ji-Hooon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.185-192
    • /
    • 2011
  • The technique of producing thin film plays a crucial role in modern science and technology as well as in industrial purposes. Numerous efforts have been made to get high quality thin film through surface treatment of materials. PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) are two of the most popular deposition techniques used in both scientific study and industrial use. It is well known that the film deposited by PVD and CVD commonly possesses a columnar microstructure which affects many film properties. In recent years, various types of deposition sources which feature high material uses and excellent film properties have been developed. Electromagnetic levitation source appeared as an alternative deposition source to realize high deposition rate for industrial use. Complex film structures such as nano multilayer and multi-components have been prepared to achieve better film properties. Glancing angle deposition (GLAD) has also been developed as a technique to engineer the columnar structure of thin films on the micro- and nanoscale. In this paper, the trends and major issues of thin film technology based on PVD and CVD have been discussed together with the prospect of thin film technology.

Application of Buffer Layers for Back Contact in CdTe Thin Film Solar Cells

  • Chun, Seungju;Kim, Soo Min;Lee, Seunghun;Yang, Gwangseok;Kim, Jihyun;Kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.318.2-318.2
    • /
    • 2014
  • The high contact resistance is still one of the major issues to be resolved in CdS/CdTe thin film solar cells. CdTe/Metal Schottky contact induced a high contact resistance in CdS/CdTe solar cells. It has been reported that the work function of CdTe thin film is more than 5.7 eV. There has not been a suitable back contact metal, because CdTe thin film has a high work function. In a few decades, some buffer layer was reported to improve a back contact problem. Buffer layers which are Te, $Sb_2Te_3$, $Cu_2Te$, ZnTe:Cu and so on was inserted between CdTe and metal electrode. A formed buffer layers made a tunnel junction. Hole carriers which was excited in CdTe film by light absorption was transported from CdTe to back metal electrode. In this report, we reported the variation of solar cell performance with different buffer layer at the back contact of CdTe thin film solar cell.

  • PDF

[ $a-Si:H/{\mu}c-Si:H$ ] thin-film tandem solar cells (비정질/마이크로 탠덤 구조형 실리콘 박막 태양전지)

  • Lee, Jeong-Chul;Song, Jin-Soo;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.228-231
    • /
    • 2006
  • This paper briefly introduces silicon based thin film solar cells: amorphous (a-Si:H), microcrystalline ${\mu}c-Si:H$ single junction and $a-Si:H/{\mu}c-Si:H$ tandem solar cells. The major difference of a-Si:H and ${\mu}c-Si:H$ cells comes from electro-optical properties of intrinsic Si-films (active layer) that absorb incident photon and generate electron-hole pairs. The a-Si:H film has energy band-gap (Eg) of 1.7-1.8eV and solar cells incorporating this wide Eg a-Si:H material as active layer commonly give high voltage and low current, when illuminated, compared to ${\mu}c-Si:H$ solar cells that employ low Eg (1.1eV) material. This Eg difference of two materials make possible tandem configuration in order to effectively use incident photon energy. The $a-Si:H/{\mu}c-Si:H$ tandem solar cells, therefore, have a great potential for low cost photovoltaic device by its various advantages such as low material cost by thin-film structure on low cost substrate instead of expensive c-Si wafer and high conversion efficiency by tandem structure. In this paper, the structure, process and operation properties of Si-based thin-film solar cells are discussed.

  • PDF

Curriculum Design for Digital Fashion Film Making (디지털 패션필름 제작 교과에 관한 커리큘럼 개발)

  • Mikyung Kim;Eunhyuk Yim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.4
    • /
    • pp.429-438
    • /
    • 2023
  • In the 21st century fashion industry, the rise of digital environments has transformed it into a dynamic medium, expanding the horizons of media utilization. Consequently, digital fashion film has emerged as a pivotal tool for fashion communication. Functioning as a visual expression medium, fashion film animates fashion concepts into immersive moving images. Proficiency in digital fashion communication has become imperative, considering the attributes of fashion media. Notably, the role of creative directors in ensuring coherent communication across diverse fashion media platforms has gained prominence, underscoring the need for systematic fashion education to nurture specialized talent. This study, therefore, devised a comprehensive curriculum amalgamating fashion communication and practical digital media skills, implemented within fashion major courses. Through this approach, students gained experimental media proficiency and explored innovative approaches to crafting fashion films that eloquently convey fashion narratives. The participants were exposed to the entire spectrum of fashion media production, encompassing digital storytelling, fashion film conceptualization, filming techniques, meticulous editing, and adept utilization of special effects technology. The study's pedagogical strategy, characterized by a focused learning trajectory, garnered significant acclaim. In essence, this study holds significance by formulating a curriculum that nurtures the imaginative and pragmatic aptitudes of fashion majors, immersing them in the dynamic realm of rapidly evolving digital fashion films and their integration with fashion content.

Application of Vector Moving Preisach Model to Longitudinal Thin Film Media

  • S. C. Seol;T. Kang;K. H. Shin;Lee, T. D.;Park, G. S.
    • Journal of Magnetics
    • /
    • v.2 no.3
    • /
    • pp.101-104
    • /
    • 1997
  • Vector Moving Preisach model has been applied to the unoriented Co-based alloy thin film media. In the model, the out-of plane easy axis distribution of the particles was derived directly from the texture coefficient phkl obtained from XRD analysis, which corresponds to the fraction of the grains that have the {hkl} plane lying parallel to in-plane direction. The model was validated, by its prediction of a variety of responses, including major loop, minor loop, and the angular dependence of coercivities.

  • PDF

A Computerized Analysis of Kinetic Posture and Muscle Contraction during a Weight Lifting Motion (역도경기(力道競技)의 운동학적(運動學的) 자세(姿勢)와 근수축(筋收縮) 수준(水準)에 관(關)한 전산분석(電算分析))

  • Lee, Myeon-U;Jang, Won-Gyeong;Seong, Deok-Hyeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.9 no.2
    • /
    • pp.9-25
    • /
    • 1983
  • The purpose of this study was to film up computerized analyses for both kinematic posture(film analysis) and muscle dynamics (EMG) during a weight-lifting motion. (Snatch, Clean and Jerk) Using a motor drive camera (3.5 frames/sec) and a Location Analyzer, motion tracks of 13 landmarks, which were attached to the major joints, during the motion were converted into digital values. At the same time, EMG amplitudes from 11 major muscle groups were recorded. Recorded data were processed via analog/hybrid computer (ADAC 480) and digital computer (PDP 11/44). Landmark locations and EMG amplitude were integrated by a computerized routine. Computer output included graphic reproductions on sepuential dislocations of body segments, center of gravity of body segments and the associated changes on EMG amplitude such as % EMG's of major muscle group during a weight lifting motion. The results strongly suggest that the computerized motion-EMG integration can provide a further working knowledge in selection and in training of workers and athletes. Suggestions for a further study include additional device for velocity measurement, expansion of the link model for biomechanical analysis and other implementations necessary for athletic application.

  • PDF

Transparent ITO/Ag/i-ZnO Multilayer Thin Film enhances Lowing Sheet Resistance

  • Kim, Sungyoung;Kim, Sangbo;Heo, Jaeseok;Cho, Eou-Sik;Kwon, Sang Jik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.187-187
    • /
    • 2015
  • The past thirty years have seen increasingly rapid advances in the field of Indium Tin Oxide (ITO) transparent thin film.[1] However, a major problem with this ITO thin film application is high cost compared with other transparent thin film materials.[2] So far, in order to overcome this disadvantage, we show a transparent ITO/Ag/i-ZnO multilayer thin film electrode can be the solution. In comparison with using amount of ITO as a transparent conducting material, intrinsic-Zinc-Oxide (i-ZnO) based on ITO/Ag/i-ZnO multilayer thin film showed cost-effective and it has not only highly transparent but also conductive properties. The aim of this research has therefore been to try and establish how ITO/Ag/i-ZnO multilayer thin film would be more effective than ITO thin film. Herein, we report ITO/Ag/i-ZnO multilayer thin film properties by using optical spectroscopic method and measuring sheet resistance. At a certain total thickness of thin film, sheet resistance of ITO/Ag/i-ZnO multilayer was drastically decreased than ITO layer approximately $40{\Omega}/{\square}$ at same visible light transmittance.(minimal point $5.2{\Omega}/{\square}$). Tendency, which shows lowly sheet resistive in a certain transmittance, has been observed, hence, it should be suitable for transparent electrode device.

  • PDF

The Effect of Mg Precursors on Optical and Structural Characteristics of Sol-Gel Processed Mg0.3Zn0.7O Thin Films (졸-겔법으로 성장시킨 Mg0.3Zn0.7O 박막의 Mg 전구체의 종류에 따른 광학적·구조적 특성에 관한 연구)

  • Yeom, Ahram;Kim, Hong Seung;Jang, Nak Won;Yun, Young;Ahn, Hyung Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.214-218
    • /
    • 2020
  • In this study, MgxZn1-xO thin films, which can be applied not only to active layers of light-emitting devices (LEDs), such as UV-LEDs, but also to solar cells, high mobility field-effect transistors, and power semiconductor devices, are fabricated using the sol-gel method. ZnO and Mg0.3Zn0.7O solution synthesized by the sol-gel method and the thin film were grown by spin coating on a Si (100) substrate and sapphire substrate. The solutions are synthesized by dissolving precursor materials in 2-methoxyethanol (2-ME) solvent, and then monoethanolamine (MEA) was added to the mixed solution as a sol stabilizer. Zinc acetate dihydrate is used as a ZnO precursor, while Mg nitrate hexahydrate and Mg acetate tetrahydrate are used as an MgO precursor. Then, the optical and structural characteristics of the fabricated thin films are compared. The molar concentration of the Zn precursor in the solvent is fixed at 0.3 M, and the amount of the Mg precursor is 30% of Mg2+/Zn2+. The optical characteristics are measured using an UV-vis spectrophotometer, and the transmittance of each wavelength is measured. Structural characteristics are measured using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Composition analyses are performed using energy dispersive X-ray spectroscopy (EDS). The Mg0.3Zn0.7O thin film was well formed at the ratio of the Mg precursor added regardless of the type of Mg precursor, and the c-axis of the thin film was decreased, while the band gap was increased to 3.56 eV.

The Effect of Light Quality on the Major Components of Hot Pepper Plant(Capsicum annuum L.) Grown in Polyethylene Film House -II. Chlorophyll, Carotenoid and Capsaicin Content- (신미종(辛味種) 고추의 Polyethylene Film House 재배시(栽培時) 주요성분(主要成分)에 미치는 Light Quality의 영향 - II. Chlorophyll, Carotenoid 및 Capsaicin 함량(含量) -)

  • Kim, Kwang-Soo;Kim, Soon-Dong;Park, Jyung-Rewng;Roh, Seung-Moon;Yoon, Tai-Hyeon
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.8-10
    • /
    • 1978
  • After growing the hot pepper fruits in polyethylene film(PE) house covered with white or red colored film, the fruits were collected and chlorophyll, carotenoid, and capsaicin content was analyzed. Although total chlorophyll content was higher in fruit of white PE house$(208.9{\mu}g/g-F.W)$ as compared to that of red PE house $(153.0{\mu}g/g-F.W)$ grown plants, the ratio of chlorophyll a over b were similar, giving 2.15 and 2.13 respectively in white and red PE house. Total carotenoid, $\beta$-carotene and the capsaicin content were higher in fruits of red PE house grown plants. Therefore, it is suggested that red film could be used as a successful covering material for poly ethylene film house.

  • PDF