• Title/Summary/Keyword: Film Sagging

Search Result 4, Processing Time 0.021 seconds

A NUMERICAL ANALYSIS ON THE BEHAVIOR OF LIQUID FILM AROUND A CURVED EDGE (곡률이 있는 모서리 주변에서의 액막 거동에 대한 수치해석적 연구)

  • Lee, Geonkang;Hur, Nahmkeon;Son, Gihun
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.75-80
    • /
    • 2012
  • Due to the effect of surface tension, liquid film around a curved edge of solid surface moves from the corner to the flat surface. During this behavior of liquid film, film sagging phenomenon is easily occurred at the solid surface. Behavior of liquid film is determined with the effects of the properties of liquid film and the geometric factors of solid surface. In the present study, 2-D transient CFD simulations were conducted on the behavior of liquid film around a curved edge. The two-phase interfacial flow of liquid film was numerically investigated by using a VOF method in order to predict the film sagging around a curved edge. In the steady state of behavior of liquid film, the liquid film thickness of numerical result showed a good agreement with experimental data. After verifying the numerical results, the characteristics of behavior of liquid film were numerically analyzed with various properties of liquid film such as surface tension coefficient and viscosity. The effects of geometric factors on film sagging were also investigated to reduce the film sagging around a curved edge.

Preparation of Electrolyte Thin Film for Anode Support Type Solid Oxide Fuel Cells by Electrophoretic Deposition and Dip-Coating (전착법과 담금법에 의한 음극지지형 SOFC 지르코니아 전해질막 제조)

  • 김상우;이병호;손용배;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.791-798
    • /
    • 1999
  • The preparation method of yttria-stabilized zirconia(YSZ) thin film for an anode support type solid oxide fuel cell(SOFC) by electrophoretic deposition(EPD) and dip-coating was studied. And the difference in both preparation method was investigated through basic understanding of processing parameters which may significantly affect weight microstruxcture and defect of film. In dip-coating the thickness of film increased with time until 30 s and then the weight of film decreased with time due to particle falling off from the coagulated film. In EPD although the weight of film increased with time and applied constant-current sagging of the film was observed when the applied current was less that 0.035 mA/$cm^2$ and more than 120 s. Since YSZ thin film by EPD on porous substrate was dense smooth and homogeneous it was expected to be suitable for the electrolyte of an anode support type SOFC.

  • PDF

Effect of Slurry Property on Preparation of Zirconia Film in Electrophoretic Deposition (전착법에서 용액특성이 지르코니아 막형성에 미치는 영향)

  • 김상우;이병호;손용배;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.991-996
    • /
    • 1999
  • Effect of solution property on the weight varation and microstructural change of film was studied by electrophoretic deposition in order to obtain a homogeneous and dense zirconia film. As a result of weight kinetics of film which obtained in alcohol or aqueous solution having different polarity experimental data showed large deviation from theoretical ones calculated by Zhang's kinetic model. It had been shown that the weight affecting factors was largely dependent on properties other than dielectric constant and viscosity of solvent zeta potential appiled field and time. In initial stage a main factor of the drastic weight increase was the capillary drag of porous substrate. The cause of weight decrease with time in aqueous solution after 300 s was attributed to the defect of film by sagging and electrolytic reaction. The electrolyte film which prepared in alcohol solution with good wetting for substrate had better homogeneous and dense microstructure than one in aqueous solution with high surface tension.

  • PDF

Comparative Evaluation of Shielding Performance according to the Characteristics of Eco-friendly Shielding Material Tungsten (친환경 차폐재료 텅스텐 특성에 따른 차폐성능 평가)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.129-136
    • /
    • 2021
  • Radiation shields used in medical institutions mainly use lead to manufacture products and fitments. Although lead has excellent processability and economic efficiency, its use is being reduced due to environmental issues when it is disposed of. In addition, when used for a long time, there is a limit to using it as a shielding film, shielding wall, medical device parts, etc. due to cracking and sagging due to gravity. To solve this problem, copper, tin, etc. are used, but tungsten is mostly used because there is a difficulty in the manufacturing process to control the shielding performance. However, it is difficult to compare with other shielding materials because the characteristics according to the type of tungsten are not well presented. Therefore, in this study, a medical radiation shielding sheet was manufactured in the same process using pure tungsten, tungsten carbide, and tungsten oxide, and the particle composition and shielding performance of the sheet cross-section were compared.As a result of comparison, it was found that the shielding performance was excellent in the order of pure tungsten, tungsten carbide, and tungsten oxide.