• Title/Summary/Keyword: Fillet weldment

Search Result 44, Processing Time 0.023 seconds

The determination of transducer location and ultrasonic wave propagation through temperature gradients in fillet are welding (온도구배가 있는 필릿용접에서 초음파의 전파와 탐촉자의 위치 결정)

  • 정선국;조형석
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.109-117
    • /
    • 1997
  • The temperature gradient in weldment changes the transit time and distorts the direction of the ultrasound beam to the higher temperature regions due to the lower sound speed in the hotter regions of the weldment. This paper describes a ray-tracing method for calculating the effects of temperature gradients on ultrasonic propagation in fillet arc weldig. In the method, weldment is conceptually devided into a number of layers and the refraction and sound speed at each layer is calculated using the temperature which calculated from analytical solution. Calculating the time and location of echoes arrived from various interfaces around a molten weld pool determines the optimum location of ultrasonic transducers and the correct position of flaws.

  • PDF

Non-contact Ultrasonic Inspection Technology of Fillet Weldments (필렛 용접부의 비접촉 초음파 검사 기법)

  • Park, Ik-Keun;Lee, Chul-Ku;Kim, Hyun-Mook;Park, Tae-Sung;Kim, Yong-Kwon;Cho, Yong-Sang;Song, Won-Joon;Ahn, Houng-Kun
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.37-42
    • /
    • 2005
  • The non-destructive Inspection of the fillet weldment has difficulties due to its geometrical complexity and uneasy access. The surface shear horizontal wave (SH-wave), however, has been successfully applied to the detection of cracks on the surface and sub-surface of the filet weldment heel part. The conventional ultrasonic inspection using the surface SH-wave is usually a contact method using piezoelectric transducer. Thus, it is not suitable for a field application because the reliability and repeatability of inspection are significantly affected by test conditions such as couplant, contact pressure and pre-process. In order to overcome this problem, a non-contact SH-wave inspection method using EMAT is propose. The experimental results with this non-contact method are compared with those with a conventional ultrasonic method in fillet weldment with slit type defects. It is shown that the non-contact inspection technique requires simple procedure and less time in the fillet weldment inspection.

Residual Stress Distribution on the Fillet Weldment used by Finite Element Method (유한요소법을 이용한 필렛용접 이음부의 잔류응력분포)

  • Kim, Hyun Sung;Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.197-207
    • /
    • 2000
  • A transient heat transfer analysis and thermo-elastic analysis have been performed for the residual stress distribution on the fillet weldment used by finite element method. Specimen is fabricated single-pass fillet welding. This computation was performed for conditions including surface heat flux and temperature dependent thermo-physical properties using by heat input as parameter. Also, cut-off temperature of residual stress estimation by thermo-elastic analysis is determined. The fillet weldment were measured to determined their residual stress distributions for using hole-drilling method. As result, it was found that large tensile residual stress is about material yield strength, and the numerical simulation results for finite element method similar to residual stresses by hole-drilling method and other exiting research. Also, cut-off temperature is effectively determined by temperature which calculated maximum thermal stress equal to material yield strength.

  • PDF

Effect of leg of fillet on stress distribution in weldments of large steel water pipes (수도용 대형 강관 용접부의 응력분포에 미치는 각장(leg of fillet)의 영향)

  • 김성도;배강열;나석주
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.54-62
    • /
    • 1992
  • Large steel water pipes are joined prevalently by bell and method and welded at inside and outside of lapped parts. According to the Korean Standard(KS) for fabrication of water pipes, the weldments are designed to have the length of leg which is same as or larger than the thickness of the pipe. It is recently pointed out that the standard size of weldments is too large, which results in an excessive consumption of material and labor. In this study, several cases of weldments having different sizes were investigated to reduce the length of leg to the effective size. For each case, the analysis of stresses was carried out to evaluate the safety of the welded pipes by using a package program, ANSYS, under the consideration of the loading condition of water pipes which includes the soil pressure on the pipe, the load over the road, and temperature change of the pipe. The results of this study revealed that the weldment which has the length of leg of the size over 0.7*thickness of the pipe could provide a stress level below the yield strength. Especially when the length of leg is 85% of the wall thickness, the maximum equivalent stress is only slightly higher than that of the leg of fillet of the size of 1.0*pipe thickness.

  • PDF

A study on the estimate of the angular distortion for a fillet weldment (필릿 용접부의 각변형량 예측에 관한 연구)

  • ;;;Lee, S. H.;Cho, S. H.
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.63-69
    • /
    • 1997
  • Welding distortion is more serious problem than any other problems caused by welding process, especially, in the heavy-industrial place. These welding distortions are caused by nonuniform heating and cooling of metal during and after welding operations. And these distortion quantities are must be known to worker in production line because distorions are important role in assembling part. Therefore an analytical model to explain and predict the welding distortion are needed. A numerical analysis of welding distortion which is inelastic behavior of weldment would require the three dimensional calculation. But computing time and memory would be very large, and the resulting cost might be unacceptable. Therefore we use a numerical technique for two dimensional analysis in the section normal to the weld direction of weldment under an assumption of quasi-stationary conditions. But the result of the calculation under two dimensional(plane strain) assumption was not satisfied as compared with experimental result. This paper proposed a technique for analysing the welding angular distortion by using a constraint boundary condition on the two dimensional finite element model. The simulation results revealed that the constraint boundary model could more reasonably describe the welding distortion than the plane strain model did.

  • PDF