• Title/Summary/Keyword: Fillet Radius Rate

Search Result 5, Processing Time 0.015 seconds

Stress Distribution in Microvascular Anastomotic Coupler (AnaFix®) Micropins with Respect to the Fillet Radius (필렛효과에 따른 미세혈관 문합커플러(AnaFix®) 마이크로핀의 응력분포)

  • Jee, Dae-Won;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1139-1145
    • /
    • 2011
  • An automated anastomotic ring-pin system consisting of both the anastomotic ring-pin system and the coupler device has eliminated the drawbacks of the suture method. High density polyethylene (HDPE), a material with outstanding biocompatibility and injection molding capability, was used in the ring. SUS316 stainless steel, Ti-6Al-4Nb, Ti-6Al-4V, and unalloyed titanium were used in FEM simulations of the micropin. The authors categorized the microvascular anastomotic ring micropins into short neck (SN) and long neck (LN) groups in order to evaluate the effect of the micropin's fillet radius and neck length on the von Mises stress. The micropins were further divided into those with and without fillet. On the basis of the fillet radius rate (FRR), which represents the rate of change in the von Mises stress with respect to the availability and shape of the fillet, and the neck length rate (NLR), which represents the rate of change in the von Mises stress with respect to changes in the length of the neck within the fillet shape, it can be concluded that the SN-3 neck design is the most stable.

Optimal Ball-end and Fillet-end Mills Selection for 3-Axis Finish Machining of Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper presents an algorithm of optimal cutting tool selection for machining of the point-based surface that is defined by a set of surface points rather than parametric polynomial surface equations. As the ball-end and fillet-end mills are generally used for finish machining in a 3-axis computer numerical control machine, the algorithm is applicable for both cutters. The optimum tool would be as large as possible in terms of the cutter radius and/or corner radius which maximise (s) the material removal rate (i.e., minimise (s) the machining time), while still being able to machine the entire point-based surface without gouging any surface point. The gouging are two types: local and global. In this paper, the distance between the cutter bottom and surface points is used to check the local gouging whereas the shortest distance between the surface points and cutter axis is effectively used to check the global gouging. The selection procedure begins with a cutter from the tool library, which has the largest cutter radius and/or corner radius, and then adequacy of the point-density is checked to limit the accuracy of the cutter selection for the point-based surface within tolerance prior to the gouge checking. When the entire surface is gouge-free with a chosen cutting tool then the tool becomes the optimum cutting tool for a list of cutters available in the tool library. The effectiveness of the algorithm is demonstrated considering two examples.

Fatigue Strength Improvement and Fatigue Characteristics by TIG-Dressing on Weld Bead Toes (용접지단부 TIG처리에 의한 피로강도향상 및 피로특성)

  • Jung, Young Hwa;Kim, Ik Gyeom;Nam, Wang Hyone;Chang, Dong Huy
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.169-178
    • /
    • 2000
  • The 4-point bending tests have been performed In order to estimate the effect of TIG-dressing on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strengths of as-welded specimens have satisfied the grade of fatigue strength prescribed in specifications of korea, AASHTO and JSSC. Fatigue strength at 2 million cycles of TIG-dressing specimens have increased compared with as-welded specimens. As the result of beachmark tests, fatigue cracks occurred at several points, where the radius of curvature and flank angle in the weld bead toes were low, and grew as semi-elliptical cracks, then approached to fracture. As a result of finite element analysis, stress concentration factor in weld bead toes has closely related to the flank angle and radius of curvature, and between these, the radius of curvature has more largely affected in stress concentration factor than flank angle. As a result of fracture mechanics approaches, the crack correction factor of test specimens has largely affected on stress gradient correction factor in case a/t is below 0.4. From the relations between stress intensity factor range estimated from FEM analysis and fatigue crack growth rate, fatigue life has been correctly calculated.

  • PDF

A Study on Rain Gutters with Coanda Effect (코안다효과가 적용된 빗물받이에 관한 연구)

  • Jung, Yong Sin;Kim, Yong Sun;Shin, Hee Jae;Ko, Sang Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.58-64
    • /
    • 2020
  • Large-scale flooding due to extreme weather and typhoons causes heavy damage. This is especially true in urban areas where accumulated debris prevents the smooth drainage of rainwater in sewage facilities such as rain gutters installed near roads. In this study, to improve the drainage performance and effectively remove foreign substances by applying the dust screen used in rivers, the rain gutter with Coanda effect was simulated and compared with the experiment. The simulation was performed by setting the parameters to the fillet radius R1 and R2 at the top of the screen filter, the fillet radius R3 at the bottom of the screen filter, and the height H of the gap W from the bottom. W is the gap at the backside of screen filter which is applied to stimulate the Coanda effect. According to the simulation results, the highest drain performance was 87.99% derived from R1= 30mm, R2= 5mm, R3= 85mm, H= 75mm, and W= 2mm. The error rate of simulation results refer to the 4.89%~7.36% compared to the experimental results. In the future, by considering the slope according to the installation environment, the simulation results can be applied to the actual roadside to help prevent flood damage.

An Effect of TIG Dressing on Fatigue Characteristics of Non Load-Carrying Fillet Welded Joints (TIG처리에 따른 하중비전달형 필렛용접부의 피로특성)

  • Jung, Young Hwa;Kyung, Kab Soo;Hong, Sung Wook;Kim, Ik Gyeom;Nam, Wang Hyone
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.617-628
    • /
    • 2000
  • In this study, the 4-point bending test has been performed in order to estimate the effect of TIG-dressing on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strength of as-welded specimens has been satisfied the grade of fatigue strength prescribed in specifications of domestics and AASHTO & JSSC, and fatigue strength at $2{\times}106cycles$ of TIG-dressing specimens has been increased compared with as-welded specimens. As the result of beachmark tests, fatigue cracks have been occurred at several points, where the radius of curvature and flank angle in the weld bead toes are low, and grown as semi-elliptical cracks, then approached to fracture. As a result of finite element analysis, stress concentration factor in weld bead toes has been closely related to the flank angel and radius of curvature, and between these, the radius of curvature has more largely affected in stress concentration factor than flank angle. As a result of fracture mechanics approaches, the crack correction factor of test specimens has been largely affected on stress gradient correction factor in case a/t is below 0.4. From the relations between stress intensity factor range estimated from FEM analysis and fatigue crack growth rate, fatigue life has been correctly calculated.

  • PDF