• 제목/요약/키워드: Filler effect

검색결과 510건 처리시간 0.036초

The Thermal Properties of PVC-Ni Composite Materials

  • Moon, Tak-Jin;Kang Chang-Gyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권1호
    • /
    • pp.45-50
    • /
    • 1985
  • The glass transition temperature, dynamic shear moduli, and bulk viscosities of PVC, filled with nickel particles, were investigated. The glass temperature of the composite increased with increasing filler concentration. The data were interpreted by assuming that the interaction between filler particles and the polymer matrix reduces molecular mobility and flexibility of the polymer chains in the vicinity of the interfaces. The relative modulus for the PVC/Ni composite system followed the Kerner equation. The relative viscosities were strongly temperature dependent and did not agree with the conventional viscosity predictions for suspensions. It is suggested that the filler has a twofold effect on the viscosity of the composite materials; one is due to its mechanical presence and the other is due to modification of part of the polymer matrix caused by interaction. This phenomenon is approximately bounded by Kerner's predictions for suspensions.

Wear Characteristics and Thermal Stability of PA66/silane treated MoS2 Composites

  • Nam, Ki-dong;Gu, Bo-ram;Ryu, Sung-hun
    • Elastomers and Composites
    • /
    • 제55권4호
    • /
    • pp.339-346
    • /
    • 2020
  • We functionalized a wear-resistant carbon-based MoS2 filler to solve its limited wear condition problem. The filler exhibits excellent lubricative properties. The surface modification of MoS2 was carried out using a (3-glycidyloxypropyl)trimethoxysilane (GPTMS) silane coupling agent to improve the low compatibility and dispersibility of the filler that generally degrade the performance of composites. A silane coupling agent was employed for the functionalization of MoS2, and its effect on the wear resistance of MoS2/Polyamide-6,6 was investigated. The silanization of MoS2 was identified by contact angle analysis and Fourier-transform infrared, energy dispersive X-ray, and X-ray photoelectron spectroscopies. The wear resistance of the composite was found to be improved significantly by the surface functionalization of MoS2.

Effects of Filler Types and Content on Shrinkage Behavior of Polypropylene Composites

  • Jung, Chun-Sik;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • 제57권3호
    • /
    • pp.107-113
    • /
    • 2022
  • The effects of fillers [talc, calcium carbonate, glass fiber, and EBR (ethylene-butene rubber)] on the shrinkage and mechanical properties of injection-molded polypropylene composites were investigated. The shrinkage correlated with the shape of the filler particles: at the same amount added, glass fibers with a large aspect ratio had the greatest effect on the shrinkage of polypropylene composites, followed by flake-shaped talc and granular calcium carbonate. It was confirmed that the addition of EBR rubber as an impact strength modifier reduced shrinkage proportionally to the added content. In addition, the addition of glass fiber resulted in the greatest increases in tensile and flexural strengths.

The Effect of Weld Metal Copper Content on HAZ Cracking in Austenitic Stainless Steel welded with Al-brass

  • Lee, H.W.;Lee, J.S.;Choe, W.H.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.152-154
    • /
    • 2005
  • Austenitic stainless steel has good weldability but is sensitive to hot cracking such as solidification crack and liquation crack. In this study, the specimens of dissimilar metals made between austenitic stainless steel and Al-brass were welded by GTAW process using four different filler metals. Cracks were detected in the heat-affected zone of the stainless steel when welded with CuAl, CuSn and NiCu filler metals, but no cracks were detected a Ni filler metal was used. The cracks propagated along the grain boundary in the heat affected zone near the fusion line to base metal of 316L stainless steel. The cracks were located inside the weld bead with very fine hairline crack. All cracks initiated at the fusion line and moved forward in the base metal. From energy dispersion spectroscopy (EDS), Cu peak was detected only in the crack-opening area.

  • PDF

Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification

  • Pandey, Harsh Kumar;Hirwani, Chetan Kumar;Sharma, Nitin;Katariya, Pankaj V.;Dewangan, Hukum Chand;Panda, Subrata Kumar
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.419-429
    • /
    • 2019
  • The effect of an increasing percentage of nanofiller (glass cenosphere) with Glass/Epoxy hybrid composite curved panels modeled mathematically using the multiscale concept and subsequent numerical eigenvalues of different geometrical configurations (cylindrical, spherical, elliptical, hyperboloid and flat) predicted in this research article. The numerical model of Glass/Epoxy/Cenosphere is derived using the higher-order polynomial type of kinematic theory in association with isoparametric finite element technique. The multiscale mathematical model utilized for the customized computer code for the evaluation of the frequency data. The numerical model validation and consistency verified with experimental frequency data and convergence test including the experimental elastic properties. The experimental frequencies of the multiscale nano filler-reinforced composite are recorded through the impact hammer frequency test rig including CDAQ-9178 (National Instruments) and LABVIEW virtual programming. Finally, the nano cenosphere filler percentage and different design associated geometrical parameters on the natural frequency data of hybrid composite structural configurations are illustrated through a series of numerical examples.

비전도성 충진액을 포함하는 전동워터펌프 열 해석 모델 (Thermal analysis model for electric water pumps with non-conductive cooling liquid)

  • 정성택;윤선진;하석재
    • Design & Manufacturing
    • /
    • 제16권2호
    • /
    • pp.46-52
    • /
    • 2022
  • As the consumer market in the eco-friendly vehicle industry grows, the demand for water pump in a electric car parts market. This study intend to propose a mathematical model that can verify the effect of improving thermal properties when a non-conductive cooling filler liquid is introduced into an electric vehicle water pump. Also, the pros and cons of the immersion cooling method and future development way were suggested by analyzing the cooling characteristics using on the derived analysis solution. Thermal characteristics analysis of electric water pump applied with non-conductive filler liquid was carried out, and the diffusion boundary condition in the motor body and the boundary condition the inside pump were expressed as a geometric model. As a result of analyzing the temperature change for the heat source of the natural convection method and the heat conduction method, the natural convection method has difficulty in dissipating heat because no decrease in temperature due to heat release was found even after 300 sec. Also, it can be seen that the heat dissipation effect was obtained even though the non-conductive filling liquid was applied at the 120 sec and 180 sec in the heat conduction method. It has proposed to minimize thermal embrittlement and lower motor torque by injecting a non-conductive filler liquid into the motor body and designing a partition wall thickness of 2.5 mm or less.

고상압출로 제조된 폴리프로필렌/탄산칼슘 복합재료의 물성에 미치는 배향의 영향 (Effects of Orientation on Properties of Solid-State Extruded Polypropylene/Calcium Carbonate Composites)

  • 이재춘;하창식
    • 접착 및 계면
    • /
    • 제14권4호
    • /
    • pp.175-182
    • /
    • 2013
  • 본 논문에서는 고상압출된 폴리프로필렌/탄산칼슘 복합재료의 배향 전후의 비중, 열적 및 기계적 물성의 변화에 대해 연구하였다. 본 연구를 위해 두 가지 다른 크기를 갖는 탄산칼슘 충진제(OM-1 및 OM-10)를 폴리프로필렌에 첨가하여 폴리프로필렌/탄산칼슘 복합재료를 제조하였다. 충진제의 함량이 증가할수록 복합재료의 비중이 증가하였는데, 배향된 복합재료의 비중은 배향되지 않은 복합 재료에 비해 작은 것으로 나타났으며 이는 배향에 따라 발생된 미세공극으로 기인한 것이다. 배향 시 발생하는 이 미세공극은 복합재료의 인장 및 굴곡 물성에 큰 영향을 미치는 것으로 밝혀졌다. 굴곡강도 및 굴곡 탄성률에 미치는 배향의 영향은 충진제의 입자 크기에 상관없이 충진제의 함량의 영향보다 더 강한 것으로 나타났다.

Effect of barium silicate filler content on mechanical properties of resin nanoceramics for additive manufacturing

  • Won, Sun;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권5호
    • /
    • pp.315-323
    • /
    • 2022
  • PURPOSE. The purpose of this study was to investigate the effect of barium silicate filler contents on mechanical properties of resin nanoceramics (RNCs) for additive manufacturing (AM). MATERIALS AND METHODS. Additively manufactured RNC specimens were divided into 4 groups depending on the content of ceramic fillers and polymers: 0% barium silicate and 100% polymer (B0/P10, control group); 50% barium silicate and 50% polymer (B5/P5); 60% barium silicate and 40% polymer (B6/P4); 67% barium silicate and 33% polymer (B6.7/P3.3). The compressive strength (n = 15) and fracture toughness (n = 12) of the specimens were measured, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analyses were performed. Independent sample Kruskal-Wallis tests were performed on the compressive strength and fracture toughness test results, and the significance of each group was analyzed at the 95% confidence interval through post-tests using the Bonferroni's method. RESULTS. B6/P4 and B6.7/P3.3 exhibited much higher yield strength than B0/P10 and B5/P5 (P < .05). Compared to the control group (B0/P10), the other three groups exhibited higher ultimate strength (P < .05). The fracture toughness of B6/P4 and B6.7/P3.3 were similar (P > .05). The content of barium silicate and fracture toughness showed a positive correlation coefficient (R = 0.582). SEM and EDS analyses revealed the presence of an oval-shaped ceramic aggregate in B6/P4 specimens, whereas the ceramic filler and polymer substrate were homogeneously mixed in B6.7/P3.3. CONCLUSION. Increasing the ceramic filler content improves the mechanical properties, but it can be accompanied by a decrease in the flowability and the homogeneity of the slurry.