• Title/Summary/Keyword: Filled composite member

Search Result 58, Processing Time 0.024 seconds

Structural Characteristics of Concrete Filled GFRP Composite Compression Member (콘크리트 합성 유리섬유 복합소재 압축부재의 거동특성)

  • 이성우;최석환;손기훈;김성태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.181-188
    • /
    • 2001
  • Due to many advantage of advanced composite material, research on the composite compression member is initiated. In this paper structural characteristics of concrete filled glass fiber reinforced composite tubular member is studied. Through 4-point flexural test with various level of axial force, the performance of composite compression member was analyzed. Also numerical method to find P-M diagram of composite compression member was developed. It is demonstrated that result of numerical method agree well with experimental results.

  • PDF

Structural Characteristics of Concrete Filled Glass Fiber Reinforced Composite Tube (콘크리트 충진 유리섬유 복합소재 튜브 합성압축부재의 구조적 특성분석)

  • 이성우;박신전;최석환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.571-574
    • /
    • 1999
  • Due to many advantages of advanced composite material, research on the composite compression member is initiated. In this paper structural characteristics of concrete filled glass fiber reinforced composite tubular member si studied. Experimental results shows that strength and ductility of composite compression member is considerably increased due to concrete confinement action of composite surface. Thus it can be anticipated that increased strength of concrete will be incorporated in the design of composite compression member.

  • PDF

Application of Composites to Construction Industry and Development of Concrete Filled Composite Compression Member (복합소재의 건설분야 응용현황과 콘크리트 합성압축부재의 개발)

  • 이성우;박신전
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.183-188
    • /
    • 1999
  • Due to many advantages of advanced composite materials, research on the application of composites to the construction industry is initiated. In this paper, fabrication methods efficient for infrastructures and application examples of each method are discussed. It also presents the structural characteristics of concrete filled glass fiber reinforced composite tubular member. Experimental results shows that strength and ductility of composite compression member is considerably increased due to concrete confinement action of composite surface.

  • PDF

The Evaluation of the Axial Strength of Composite Column with HSA800 Grade Steel (HSA800 강재를 적용한 합성기둥의 축방향 내력 평가)

  • Lee, Myung Jae;Kim, Cheol Hwan;Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.473-483
    • /
    • 2014
  • According to the Korean Building Code (KBC), the validity of the application of 800MPa grade steel(HSA800) to composite column should be verified by experimental or analytical method. Thus, stub column tests for encased and filled composite members with HSA800 steel were conducted, and axial strength and the validity of design compressive strength equations in KBC were evaluated. The test results show that the equation of the compressive strength of encased composite column member in KBC should be modified in order to use HSA800 steel without any reduction of specified minimum yield strength. For this purpose, it is suggested that the interval of hoop should be narrowed and the effective concrete area should be used. The equation of the compressive strength of filled composite column member in KBC is applicable to filled composite column with HSA800 steel without any modification.

Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • Hollow steel-reinforced concrete-filled GFRP tubular member is a new kind of composite members. Firstly set the mold in the GFRP tube (non-bearing component), then set the longitudinal reinforcements with stirrups (steel reinforcement cage) between the GFRP tube and the mold, and filled the concrete between them. Through the axial compression test of the hollow steel-reinforced concrete-filled GFRP tubular member, the working mechanism and failure modes of composite members were obtained. Based on the experiment, when the load reached the ranges of $55-70%P_u$ ($P_u-ultimate$ load), white cracks appeared on the surface of the GFRP tubes of specimens. At that time, the confinement effects of the GFRP tubes on core concrete were obvious. Keep loading, the ranges of white cracks were expanding, and the confinement effects increased proportionally. In addition, the damages of specimens, which were accompanied with great noise, were marked by fiber breaking and resin cracking on the surface of GFRP tubes, also accompanied with concrete crushing. The bearing capacity of the axially compressed components increased with the increase of reinforcement ratio, and decreased with the increase of hollow ratio. When the reinforcement ratio was increased from 0 to 4.30%, the bearing capacity was increased by about 23%. When the diameter of hollow part was decreased from 55mm to 0, the bearing capacity was increased by about 32%.

Concrete filled double skin tubular members subjected to bending

  • Uenaka, Kojiro;Kitoh, Hiroaki;Sonoda, Keiichiro
    • Steel and Composite Structures
    • /
    • v.8 no.4
    • /
    • pp.297-312
    • /
    • 2008
  • A concrete filled double skin tubular (called CFDST in abbreviation) member consists of two concentric circular steel tubes and filled concrete between them. Purpose of this study is to investigate their bending characteristics experimentally. The two test parameters of the tubes considered were an inner-to-outer diameter ratio and a thickness-diameter ratio. As a result, their observed failure modes were controlled by tensile cracking or local buckling of the outer tube. Discussion is focused on the confinement effect on the filled concrete due to the both tubes and also the influence of the inner-to-outer diameter ratios on their deformability and load carrying capacity.

The Study on the Structural Behavior of Concrete-filled Composite Piers (콘크리트충전 강합성 교각의 구조적 거동에 관한 연구)

  • 김유경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.151-158
    • /
    • 2000
  • In this paper, It is presented that concrete-filled composite piers have large energy-absorption capacity and high strength and stiffness on account of mutual confinement between the steel plate and filled-in concrete. Concrete-filled composite columns were tested to failure under axial compression and cyclic lateral loading. Displacement ductility index obtained by using the load-displacement relation has been increased with the increment of filled-in concrete length, while it has been decreased according to the incrementation of width-thickness ratio, slenderness ratio and the number of loading cycles. Structural behavior and ductility index estimated for the seismic design showed that composite piers could be used as a very efficient earthquake-resistant structural member. The response modification factor could be re-evaluated for concrete-filled composite piers.

  • PDF

A Study on the Ductility of Concrete-Filled Composite Columns under Cyclic Loading (반복하중을 받는 콘크리트충전 강합성 기둥의 연성에 관한 연구)

  • 송준엽;권영봉;김성곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.11-19
    • /
    • 2001
  • A series of test on concrete-filled composite columns was preformed to evaluate structural performance under axial compression and cyclic lateral loading. It was presented that concrete-filled composite columns had high strength, high stiffness and large energy-absorption capacity on account of mutual confinement between the steel plate and filled-in concrete. A cross section analysis procedure developed to predict the moment-curvature relation of composite columns was proven to be on accurate and effective method. The ductility factor and the response modification factor were evaluated for the seismic design of concrete-filled composite columns. It was shown that concrete-filled composite columns could be used as a very efficient earthquake-resistant structural member.

  • PDF

Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns

  • Han, Lin-Hai;Yao, Guo-Huang;Zhao, Xiao-Ling
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.169-188
    • /
    • 2004
  • A mechanics model is developed in this paper for concrete-filled steel CHS (circular hollow section) beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and the filled concrete. The predicted load versus deformation relationship is in good agreement with test results. The theoretical model was used to investigate the influence of important parameters that determine the ultimate strength of concrete-filled steel CHS beam-columns. The parametric and experimental studies provide information for the development of formulas for the calculation of the ultimate strength of the composite beam-columns. Comparisons are made with predicted beam-columns strengths using the existing codes, such as LRFD-AISC-1999, AIJ-1997, BS5400-1979 and EC4-1994.

Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns

  • Han, Lin-Hai;Zhao, Xiao-Ling;Tao, Zhong
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.51-74
    • /
    • 2001
  • A series of tests on concrete-filled SHS (Square Hollow Section) stub columns (twenty), columns (eight) and beam-columns (twenty one) were carried out. The main parameters varied in the tests are (1) Confinement factor (${\xi}$) from 1.08 to 5.64, (2) concrete compression strength from 10.7MPa to 36.6MPa, (3) tube width to thickness ratio from 20.5 to 36.5. (4) load eccentricity (e) from 15 mm to 80 mm and (5) column slenderness (${\lambda}$) from 45 to 75. A mechanics model is developed in this paper for concrete-filled SHS stub columns, columns and beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and filled concrete. The predicted load versus axial strain relationship is in good agreement with stub column test results. Simplified models are derived for section capacities and modulus in different stages of the composite sections. The predicted beam-column strength is compared with that of 331 beam-column tests with a wide range of parameters. A good agreement is obtained. The predicted load versus midspan deflection relationship for beam-columns is in good agreement with test results. A simplified model is developed for calculating the member capacity of concrete-filled SHS columns. Comparisons are made with predicted columns strengths using the existing codes such as LRFD (AISC 1994), AIJ (1997), and EC4 (1996). Simplified interaction curves are derived for concrete-filled beam-columns.