• Title/Summary/Keyword: Filesystem

Search Result 63, Processing Time 0.029 seconds

Embedded File System for Ubiquitous Computing (유비쿼터스 컴퓨팅을 위한 임베디드 파일시스템)

  • Lee, Byung-Kwon;Ju, Young-Kwan;Kim, Suk-Il;Jeon, Joong-Nam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.424-430
    • /
    • 2004
  • This paper explains the construction of the filesystems which could be utilized in embedded systems as an implementation of ubiquitous computing. It includes the formal architecture of filesystem hierarchy for the DOC (Disk-On-Chip) filesystem and the flash filesystem based on the MTD (Memory Technology Devices). For DOC, the root filesystem and the user filesystem are constructed by the TrueFFS supported by the M-Systems. For MTD filesystem, the root filesystem is implemented in the fast RAM disk, and the user filesystem is implemented in the JFFS2 that supports large capacity. In order to support the GUI filesystem, the porting process of Qt/E is also included in this paper.

Sanitization of Open-Source Based Deduplicated Filesystem (오픈 소스 중복 제거 파일시스템에서의 완전 삭제)

  • Cho, Hyeonwoong;Kim, SeulGi;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1141-1149
    • /
    • 2016
  • Deduplicated filesystem can reduce usage of storage. However, it be able to recover deleted block. We studied sanitization of deduplicated filesystem, LessFS which is based on FUSE(Filesystem in USErspace). First, we show a vulnerability recover deleted data in the deduplicated filesystem. We implement sanitization of deduplicated filesystem considering the part of fingerprint DB with data blocks. It takes 60~70 times compared to without sanitization. Which means access time to fingerprint DB and overhead derived from increase of number of chunk have a critical impact on sanitization time. But in case of more than 65,536 Byte of chunksize, it is faster than normal filesystem without deduplication.

Design and Implementation of Force Unmount for Linux Filesystem (Linux Filesystem을 위한 Force Unmount 설계 및 구현)

  • Kim, Dong-Wook;Lim, Eun-Ji;Cha, Gyu-Il;Jung, Sung-In
    • Journal of Information Technology Services
    • /
    • v.4 no.2
    • /
    • pp.99-107
    • /
    • 2005
  • This paper describes a kernel function named FU(forced unmount) related to filesystem on linux system. FU is a function to forcibly unmount filesystems in despite of busy state of the filesystems. Our current implementation has been developed on linux-2.6.8 and tested in environments that are established by tools, POSTMAR and LTP. This contains considerations of FU and a algorithm to solve problems during developing FU.

Attribute-Rich Log-Structured Filesystem for Semantic File Search on SSD (SSD에서의 시맨틱 파일 검색을 위한 확장된 속성 제공의 로그기반 파일시스템)

  • Ki, An-Ho;Kang, Soo-Yong
    • Journal of Digital Contents Society
    • /
    • v.12 no.2
    • /
    • pp.241-252
    • /
    • 2011
  • During the last decades, other parts of operating systems, storage devices, and media are changed steadily, whereas filesystem is changed little. As data is grown bigger, the number of files to be managed also increases in geometrically. Researches about new filesystem schemes are being done widely to support these files efficiently. In web document search area, there are many researches about finding meaningful documents using semantic search. Many researches tried to apply these schemes, which is been proven in web document search previously, to filesystems. But they've focused only on higher layer of filesystem, that is not related seriously to storage media. Therefore they're not well tuned to physical characteristics of new flash memory based SSD which has different features against traditional HDD. We enhance log structured filesystem, that is already well known to work better in SSD, by putting semantic search scheme to and with multi logging point.

Improving the Read Performance of Compressed File Systems Considering Kernel Read-ahead Mechanism (커널의 미리읽기를 고려한 압축파일시스템의 읽기성능향상)

  • Ahn, Sung-Yong;Hyun, Seung-Hwan;Koh, Kern
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.678-682
    • /
    • 2010
  • Compressed filesystem is frequently used in the embedded system to increase cost efficiency. One of the drawbacks of compressed filesystem is low read performance. Moreover, read-ahead mechanism that improves the read throughput of storage device has negative effect on the read performance of compressed filesystem, increasing read latency. Main reason is that compressed filesystem has too big read-ahead miss penalty due to decompression overhead. To solve this problem, this paper proposes new read technique considering kernel read-ahead mechanism for compressed filesystem. Proposed technique improves read throughput of device by bulk read from device and reduces decompression overhead of compressed filesystem by selective decompression. We implement proposed technique by modifying CramFS and evaluate our implementation in the Linux kernel 2.6.21. Performance evaluation results show that proposed technique reduces the average major page fault handling latency by 28%.

Automatic Encryption Method within Kernel Level using Various Access Control Policy in UNIX system (유닉스 시스템에서 다양한 접근제어 정책을 이용한 커널 수준의 자동 암호화 기법)

  • Lim, Jae-Deok;Yu, Joon-Suk;Kim, Jeong-Nyeo
    • The KIPS Transactions:PartC
    • /
    • v.10C no.4
    • /
    • pp.387-396
    • /
    • 2003
  • Many studies have been done on secure kernel and encryption filesystem for system security. Secure kernel can protect user or system data from unauthorized and/or illegal accesses by applying various access control policy like ACL, MAC, RBAC and so on, but cannot protect user or system data from stealing backup media or disk itself. In addition to access control policy, there are many studies on encryption filesystem that encrypt file data within system level. However few studies have been done on combining access control policy and encryption filesystem. In this paper we proposed a new encryption filesystem that provides a transparency to the user by integrating encryption service into virtual filesystem layer within secure kernel that has various access control policies. Proposed encryption filesystem can provide a simple encryption key management architecture by using encryption keys based on classes of MAC policy and overcome a limit of physical data security of access control policy for stealing.

A Mobile Flash File System - MJFFS (모바일 플래시 파일 시스템 - MJFFS)

  • 김영관;박현주
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.2
    • /
    • pp.29-43
    • /
    • 2004
  • As the development of an information technique, gradually, mobile device is going to be miniaturized and operates at high speed. By such the requirements, the devices using a flash memory as a storage media are increasing. The flash memory consumes low power, is a small size, and has a fast access time like the main memory. But the flash memory must erase for recording and the erase cycle is limited. JFFS is a representative filesystem which reflects the characteristics of the flash memory. JFFS to be consisted of LSF structure, writes new data to the flash memory in sequential, which is not related to a file size. Mounting a filesystem or an error recovery is achieved through the sequential approach. Therefore, the mounting delay time is happened according to the file system size. This paper proposes a MJFFS to use a multi-checkpoint information to manage a mass flash file system efficiently. A MJFFS, which improves JFFS, divides a flash memory into the block for suitable to the block device, and stores file information of a checkpoint structure at fixed interval. Therefore mounting and error recovery processing reduce efficiently a number of filesystem access by collecting a smaller checkpoint information than capacity of actual files. A MJFFS will be suitable to a mobile device owing to accomplish fast mounting and error recovery using advantage of log foundation filesystem and overcoming defect of JFFS.

  • PDF

Performance Analysis of Global Shared Filesystem for the PLSI (국가 슈퍼컴퓨팅 공동활용체제 구축을 위한 글로벌공유파일시스템 성능 분석)

  • Woo, Joon;Park, SeokJung;Lee, SangDong;Kim, HyongShik
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.509-512
    • /
    • 2007
  • The purpose of the PLSI(Patnership & Leadership for the national Supercomputing Infarastructure) is to maximize a utilization of public supercomputing resources by linking with each other. When someone performs a simulation and visualization of an application using it's resources on each sites, it needs to construct the infrastructure, so that afford to access the data globally. So, in this research, I implemented the global shared filesystem mutually to share remote filesystem's data between KISTI and Pusan National University's supercomputing center based on GPFS of parallel file system, and analyzed a performance of network and filesystem on 1Gbps WAN.

  • PDF

Implementation and Performance Analysis of Hadoop MapReduce over Lustre Filesystem (러스터 파일 시스템 기반 하둡 맵리듀스 실행 환경 구현 및 성능 분석)

  • Kwak, Jae-Hyuck;Kim, Sangwan;Huh, Taesang;Hwang, Soonwook
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.561-566
    • /
    • 2015
  • Hadoop is becoming widely adopted in scientific and commercial areas as an open-source distributed data processing framework. Recently, for real-time processing and analysis of data, an attempt to apply high-performance computing technologies to Hadoop is being made. In this paper, we have expanded the Hadoop Filesystem library to support Lustre, which is a popular high-performance parallel distributed filesystem, and implemented the Hadoop MapReduce execution environment over the Lustre filesystem. We analysed Hadoop MapReduce over Lustre by using Hadoop standard benchmark tools. We found that Hadoop MapReduce over Lustre execution has a performance 2-13 times better than a typical Hadoop MapReduce execution.

A Study on the Processing of Timestamps in the Creation of Multimedia Files on Mobile Devices

  • Han, Jaehyeok;Lee, Sangjin
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.402-410
    • /
    • 2022
  • Digital data can be manipulated easily, so information related to the timestamp is important in establishing the reliability of the data. The time values for a certain file can be extracted following the analysis of the filesystem metadata or file internals, and the information can be utilized to organize a timeline for a digital investigation. Suppose the reversal of a timestamp is found on a mobile device during this process. In this case, a more detailed analysis is required due to the possibility of anti-forensic activity, but little previous research has investigated the handling and possible manipulation of timestamps on mobile devices. Therefore, in this study, we determine how time values for multimedia files are handled according to the operating system or filesystem on mobile devices. We also discuss five types of timestamps-file created (C), last modified (M), last accessed (A), digitalized (Di), and filename (FN) of multimedia files, and experimented with their operational features across multiple devices such as smartphones and cameras.