• Title/Summary/Keyword: File system

Search Result 2,280, Processing Time 0.032 seconds

Security Treats about Union File System and Responce Methodology (유니온 파일시스템에 대한 보안 위협 및 대응 방법)

  • Han, Sung-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.445-446
    • /
    • 2021
  • Union file system is a technology that can be used as a single file system by integrating various files and directories. It has the advantage of maintaining the source file/directory used for integration, so it is used in many applications like container platform. When using the union file system, the user accesses the write-able layer, to which the security technology provided by the operating system can be applied. However, there is a disadvantage in that it is difficult to apply a separate security technology to the source file and directory used to create the union file system. In this study, we intend to propose an access control mechanism to deny security threats to source file/directory that may occur when using the union file system. In order to verify the effectiveness of the access control mechanism, it was confirmed that the access control mechanism proposed in this study can protect the source file/directory while maintaining the advantages of the union file system.

  • PDF

Metadata Structrues of Huge Shared Disk File System for Large Files in GIS (GIS에서 대용량 파일을 위한 대용량 공유 디스크 파일시스템의 메타데이터 구조)

  • 김경배;이용주;박춘서;신범주
    • Spatial Information Research
    • /
    • v.10 no.1
    • /
    • pp.93-106
    • /
    • 2002
  • The traditional file system are designed to store and manage fur small size files. So. we cannot process the huge files related with geographic information data using the traditional file system such as unix file system or linux file system. In this paper, we propose new metadata structures and management mechanisms for the large file system in geographic information system. The proposed mechanisms use dynamic multi-level mode for large files and dynamic bitmap for huge file system. We implement the proposed mechanisms in the metadata structures of SANtopia is shared disk huge file system for storage area networks(SAN).

  • PDF

Performance Comparative Analysis of Flash File System for Embedded Systems on Linux Environment (리눅스 환경에서 임베디드 시스템을 위한 플래시 파일 시스템의 성능 비교 분석)

  • Choi, Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.109-114
    • /
    • 2014
  • Recently the operating system share of linux on embedded system is increasing. The embedded systems on linux environment, commonly equip a file system as mini hard disk or flash memory to keep data. The types of the file system of the system are various according to it's operating system. Anyway, the more embedded system depends on the file system, the selection of the type of the file system effects more on the performance of the system. This thesis performs the performance benchmark of a FAT and Ext file systems which are most popular in embedded system. As the result, it is discussed that what file system is better at which case. These results will be a index at the selection of flash file system of the embedded systems on linux environment.

File Modification Pattern Detection Mechanism Using File Similarity Information

  • Jung, Ho-Min;Ko, Yong-Woong
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.34-37
    • /
    • 2012
  • In a storage system, the performance of data deduplication can be increased if we consider the file modification pattern. For example, if a file is modified at the end of file region then fixed-length chunking algorithm superior to variable-length chunking. Therefore, it is important to predict in which location of a file is modified between files. In this paper, the essential idea is to exploit an efficient file pattern checking scheme that can be used for data deduplication system. The file modification pattern can be used for elaborating data deduplication system for selecting deduplication algorithm. Experiment result shows that the proposed system can predict file modification region with high probability.

Performance Analysis of Block Write Operation of File Systems on Linux Environment (리눅스 환경에서 파일 시스템들의 블록 쓰기 연산 성능 분석)

  • Choi, Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.136-140
    • /
    • 2015
  • Linux environment that is commonly used at embedded systems supports various file systems as Ext2, FAT, NTFS, etc. The file system that is equiped on the embedded system is mostly implemented on mini hard disk or flash memory. The types of the file system of the system make an effect on the performance of a application programs. The factors of file system performance on a same media are block read, block write and block free time. On these factors, block read and block free time are not so different according to the type of file systems. This paper evaluates the performance benchmark of file systems supported by linux about block allocation and write performance. The results obtained from various experiments shows the characteristics of each file system.

Assessment of the Efficiency of Garbage Collection for the MiNV File System (메타데이타를 비휘발성 램에 유지하는 플래시 파일시스템에서 가비지 컬렉션 수행에 대한 효율성 평가)

  • Doh, In-Hwan;Choi, Jong-Moo;Lee, Dong-Hee;Noh, Sam-H.
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.2
    • /
    • pp.241-245
    • /
    • 2008
  • Non-volatile RAM (NVRAM) has both characteristics of nonvolatility and byte addressability. In order to efficiently exploit this NVRAM in the file system layer, we proposed the MiNV (Metadata in NVram) file system in our previous research. MiNV file system maintains all the metadata in NVRAM while storing file data in NAND Flash memory. In this paper, we experimentally analyze the efficiency for the execution of garbage collection in the MiNV file system. Also, we quantify the file system performance gains obtained from efficient garbage collection. Experimental results show that garbage collection on the MiNV file system executes more efficiently that on YAFFS even though these file systems adopt exactly the same garbage collection policy. Specifically, the MiNV file system invokes the aggressive garbage collection mechanism less frequently than YAFFS. Additionally, the MiNV file system postpones the first execution of the aggressive garbage collection mechanism in our experiments. From the experiments, we verify that the efficiency of garbage collection leads to performance improvements of the MiNV file system.

A Study on the Performance Factors of File System in General Purposed Embedded Systems (범용 임베디드 시스템에서 파일 시스템의 성능 인자 연구)

  • Choi, Jin-oh;Kim, Soo-hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.187-189
    • /
    • 2012
  • The embedded systems commonly equip a file system as default to keep data. This file system is mostly constructed with flash memory as the price get lower and the performance get higher. Types of the file system implemented on the flash memory are various according to types of embedded operating systems. By the way, as the embedded systems increasingly depend on the file system, a selection of the file system type of the embedded systems influences the performance of the entire system. This thesis discusses the factors to influence the performance of entire system in construction of file system and selection of the types, and discusses the research results.

  • PDF

Failure Recovery in the Linux Cluster File System SANiqueTM (리눅스 클러스터 화일 시스템 SANiqueTM의 오류 회복 기법)

  • Lee, Gyu-Ung
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.359-366
    • /
    • 2001
  • This paper overviews the design of SANique$^{TM}$ -a shred file system for Linux cluster based on SAN environment. SANique$^{TM}$ has the capability of transferring user data from network-attached SAN disks to client applcations directly without the control of centralized file server system. The paper also presents the characteristics of each SANique$^{TM}$ subsystem: CFM(Cluster File Manager), CVM(Cluster Volume Manager), CLM(Cluster Lock Manager), CBM(Cluster Buffer Manager) and CRM(Cluster Recovery Manager). Under the SANique$^{TM}$ design layout, then, the syndrome of '||'&'||'quot;split-brain'||'&'||'quot; in shared file system environments is described and defined. The work first generalizes and illustrates possible situations in each of which a shared file system environment may split into two or more pieces of separate brain. Finally, the work describes the SANique$^{TM}$ approach to the given "split-brain"problem using SAN disk named "split-brain" and develops the overall recovery procedure of shared file systems.

  • PDF

Performance Analysis of Block Allocation of File Systems on Linux Environment (리눅스 환경에서 파일 시스템들의 블록 할당 성능 분석)

  • Choi, Jin-oh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.355-357
    • /
    • 2014
  • Linux environment that is commonly used at embedded systems, supports various file systems as Ext2, FAT, NTFS, ets. The file system that is equiped on the embedded system is mostly implemented on mini hard disk or flash memory. The types of the file system of the system make an effect on the performance of a application programs. The factors of file system performance on a same media are block allocation and block free time. On these factors, block free time is not so different according to the type of file systems. This thesis performs the performance benchmark of a Ext2, FAT and NTFS file systems about block allocation performance. As the result, it is discussed that what file system is better at which case.

  • PDF

Development and Evaluation of Key Recovery System for Secure Recovery of Cryptographic Files in PC (PC상의 암호파일의 안전한 복구를 위한 키복구 시스템의 개발 및 평가)

  • 장수진;고정호;이강수
    • The Journal of Society for e-Business Studies
    • /
    • v.7 no.1
    • /
    • pp.167-186
    • /
    • 2002
  • The encryption of a file on a PC before saving can maintain security of the file. However, if the key for the encrypted file is lost or damaged, the encrypted file can not be decrypted, resulting in serious economical loss to the user or the user group. In order to minimize the economical loss a secure and reliable key recovery technology is required. Presented in this paper is the development and evaluation of PKRS (PC based Key Recovery System) which supports encryption and decryption of file and recovery of the encrypted file in emergency. The encapsulating method, which attaches key recovery information to encrypted file, is applied to the PKRS. In addition, the PKRS is developed and evaluated according to the requirements of Requirements for Key Recovery Products proposed by NIST and requirements of Common Criteria 2.0 to prove the safety and reliability of the information security system. This system is applicable to a PC and can be further extended to internet or intranet environment information system where in encryption and recovery of file is possible.

  • PDF