• Title/Summary/Keyword: File Cluster

Search Result 114, Processing Time 0.025 seconds

A study on high availability of the linux clustering web server (리눅스 클러스터링 웹 서버의 고가용성에 대한 연구)

  • 박지현;이상문;홍태화;김학배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.88-88
    • /
    • 2000
  • As more and more critical commercial applications move on the Internet, providing highly available servers becomes increasingly important. One of the advantages of a clustered system is that it has hardware and software redundancy. High availability can be provided by detecting node or daemon failure and reconfiguring the system appropriately so that the workload can be taken over bi the remaining nodes in the cluster. This paper presents how to provide the guaranteeing high availability of clustering web server. The load balancer becomes a single failure point of the whole system. In order to prevent the failure of the load balancer, we setup a backup server using heartbeat, fake, mon, and checkpointing fault-tolerance method. For high availability of file servers in the cluster, we setup coda file system. Coda is a advanced network fault-tolerance distributed file system.

  • PDF

A Method of Data Hiding in a File System by Modifying Directory Information

  • Cho, Gyu-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.85-93
    • /
    • 2018
  • In this research, it is proposed that a method to hide data by modifying directory index entry information. It consists of two methods: a directory list hiding and a file contents hiding. The directory list hiding method is to avoid the list of files from appearing in the file explorer window or the command prompt window. By modifying the file names of several index entries to make them duplicated, if the duplicated files are deleted, then the only the original file is deleted, but the modified files are retained in the MFT entry intact. So, the fact that these files are hidden is not exposed. The file contents hiding is to allocate data to be hidden on an empty index record page that is not used. If many files are made in the directory, several 4KB index records are allocated. NTFS leaves the empty index records unchanged after deleting the files. By modifying the run-list of the index record with the cluster number of the file-to-hide, the contents of the file-to-hide are hidden in the index record. By applying the proposed method to the case of hiding two files, the file lists are not exposed in the file explorer and the command prompt window, and the contents of the file-to-hide are hidden in the empty index record. It is proved that the proposed method has effectiveness and validity.

A Study of designing Parallel File System for Massive Information Processing (대규모 정보처리를 위한 병렬 화일시스템 설계에 관한 연구)

  • Jang, Si-Ung;Jeong, Gi-Dong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.5
    • /
    • pp.1221-1230
    • /
    • 1997
  • In this study, the performance of a parallel file system(N-PFS), which is inplemented using conventional disks as disk arrays on a Workstation Cluster, is analyzed by using analytical method and adtual values in experiments.N-PFS can be used as high-performance file sever in small-scale server systems and effciently pro-cess massive data I/Os such as multimedia and scientifid data. In this paper, an analytical model was suggested and the correctness of the suggested was verified by analyzing the experimental values on a system.The result of the appropriate stping unit for processing massive data of the Workstation Cluster with 8 disks is 64-128Kbytes and the maximum throughput on it is 15.8 Mbytes/ses.In addition, the performance of parallel file system on massive data is bounded by the time required to copy data between buffers.

  • PDF

A Clustering File Backup Server Using Multi-level De-duplication (다단계 중복 제거 기법을 이용한 클러스터 기반 파일 백업 서버)

  • Ko, Young-Woong;Jung, Ho-Min;Kim, Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.7
    • /
    • pp.657-668
    • /
    • 2008
  • Traditional off-the-shelf file server has several potential drawbacks to store data blocks. A first drawback is a lack of practical de-duplication consideration for storing data blocks, which leads to worse storage capacity waste. Second drawback is the requirement for high performance computer system for processing large data blocks. To address these problems, this paper proposes a clustering backup system that exploits file fingerprinting mechanism for block-level de-duplication. Our approach differs from the traditional file server systems in two ways. First, we avoid the data redundancy by multi-level file fingerprints technology which enables us to use storage capacity efficiently. Second, we applied a cluster technology to I/O subsystem, which effectively reduces data I/O time and network bandwidth usage. Experimental results show that the requirement for storage capacity and the I/O performance is noticeably improved.

The development of the high effective and stoppageless file system for high performance computing (High Performance Computing 환경을 위한 고성능, 무정지 파일시스템 구현)

  • Park, Yeong-Bae;Choe, Seung-Hwan;Lee, Sang-Ho;Kim, Gyeong-Su;Gong, Yong-Jun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.395-401
    • /
    • 2004
  • In the current high network-centralized computing and enterprising environment, it is getting essential to transmit data reliably at very high rates. Until now previous client/server model based NFS(Network File System) or AFS(Andrew's Files System) have met the various demands but from now couldn't satisfy those of the today's scalable high-performance computing environment. Not only performance but data sharing service redundancy have risen as a serious problem. In case of NFS, the locking issue and cache cause file system to reboot and make problem when it is used simply as ip-take over for H/A service. In case of AFS, it provides file sharing redundancy but it is not possible until the storage supporting redundancy and equipments are prepared. Lustre is an open source based cluster file system developed to meet both demands. Lustre consists of three types of subsystems : MDS(Meta-Data Server) which offers the meta-data services, OST(Objec Storage Targets) which provide file I/O, and Lustre Clients which interact with OST and MDS. These subsystems with message exchanging and pursuing scalable high-performance file system service. In this paper, we compare the transmission speed of gigabytes file between Lustre and NFS on the basis of concurrent users and also present the high availability of the file system by removing more than one OST in operation.

  • PDF

Online Resizing of Shared File System In SAN Environment (SAN환경 공유 곡일 시스템의 온라인 리사이징)

  • 임승호;이주평;조준우;박규호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1633-1636
    • /
    • 2003
  • In this paper, we developed the scheme to grow to use newly added disk space without having to kill the application, unmount file system. This scheme, called online resizing, can resize the file system layout with the advent of Logical Volume Manager. The online resizing scheme is designed and implemented in linux cluster system where multiple hosts share the disk data in storage area network environment. It is incorporated with SANfs shared file system and can perform resizing technique with SANfs-VM volume manager. The experimental result shows that it can maximize the availability and capacity of the SANfs system which are important for modem servers where must not lose their customer.

  • PDF

A Global Buffer Manager for a Shared Disk File System in SAN Clusters (SAN 환경에서 공유 디스크 파일 시스템을 위한 전역 버퍼 관리자)

  • 박선영;손덕주;신범주;김학영;김명준
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.2
    • /
    • pp.134-145
    • /
    • 2004
  • With rapid growth in the amount of data transferred on the Internet, traditional storage systems have reached the limits of their capacity and performance. SAN (Storage Area Network), which connects hosts to disk with the Fibre Channel switches, provides one of the powerful solutions to scale the data storage and servers. In this environment, the maintenance of data consistency among hosts is an important issue because multiple hosts share the files on disks attached to the SAN. To preserve data consistency, each host can execute the disk I/O whenever disk read and write operations are requested. However, frequent disk I/O requests cause the deterioration of the overall performance of a SAN cluster. In this paper, we introduce a SANtopia global buffer manager to improve the performance of a SAN cluster reducing the number of disk I/Os. We describe the design and algorithms of the SANtopia global buffer manager, which provides a buffer cache sharing mechanism among the hosts in the SAN cluster. Micro-benchmark results to measure the performance of block I/O operations show that the global buffer manager achieves speed-up by the factor of 1.8-12.8 compared with the existing method using disk I/O operations. Also, File system micro-benchmark results show that SANtopia file system with the global buffer manager improves performance by the factor of 1.06 in case of directories and 1.14 in case of files compared with the file system without a global buffer manager.

High-Dimensional Image Indexing based on Adaptive Partitioning ana Vector Approximation (적응 분할과 벡터 근사에 기반한 고차원 이미지 색인 기법)

  • Cha, Gwang-Ho;Jeong, Jin-Wan
    • Journal of KIISE:Databases
    • /
    • v.29 no.2
    • /
    • pp.128-137
    • /
    • 2002
  • In this paper, we propose the LPC+-file for efficient indexing of high-dimensional image data. With the proliferation of multimedia data, there Is an increasing need to support the indexing and retrieval of high-dimensional image data. Recently, the LPC-file (5) that based on vector approximation has been developed for indexing high-dimensional data. The LPC-file gives good performance especially when the dataset is uniformly distributed. However, compared with for the uniformly distributed dataset, its performance degrades when the dataset is clustered. We improve the performance of the LPC-file for the strongly clustered image dataset. The basic idea is to adaptively partition the data space to find subspaces with high-density clusters and to assign more bits to them than others to increase the discriminatory power of the approximation of vectors. The total number of bits used to represent vector approximations is rather less than that of the LPC-file since the partitioned cells in the LPC+-file share the bits. An empirical evaluation shows that the LPC+-file results in significant performance improvements for real image data sets which are strongly clustered.

Fips : Dynamic File Prefetching Scheme based on File Access Patterns (Fips : 파일 접근 유형을 고려한 동적 파일 선반입 기법)

  • Lee, Yoon-Young;Kim, Chei-Yol;Seo, Dae-Wha
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.7
    • /
    • pp.384-393
    • /
    • 2002
  • A Parallel file system is normally used to support excessive file requests from parallel applications in a cluster system, whereas prefetching is useful for improving the file system performance. This paper proposes a new prefetching method, Fips(dynamic File Prefetching Scheme based on file access patterms), that is particularly suitable for parallel scientific applications and multimedia web services in a parallel file system. The proposed prefetching method introduces a dynamic prefetching scheme to predict data blocks precisely in run-time although the file access patterns are irregular. In addition, it includes an algorithm to determine whether and when the prefetching is performed using the current available I/O bandwidth. Experimental results confirmed that the use of the proposed prefetching policy in a parallel file system produced a higher file system performance.

A Linux Cluster File System for Efficient Multimedia Services (효율적인 멀티미디어 서비스를 위한 리눅스 클러스터 파일 시스템)

  • 강미연;홍재연;김형식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.652-654
    • /
    • 2002
  • 최근 리눅스 클러스터 시스템의 활용 범위가 커지면서 멀티미디어 서비스를 제공하려는 시도가 나타났다. 리눅스 클러스터 시스템 상에서 효과적으로 멀티미디어 서비스를 제공하려면 적합한 파일 시스템의 도움이 필수적이다. 즉, 클러스터 파일 시스템을 통하여 응용 프로그램에 대한 단일 입출력공간을 제공하고 효율적인 파일/디렉토리 연산을 제공하는 기술이 중요하다. 본 논문에서는 리눅스 클러스터 시스템을 위한 클러스터 파일 시스템(Cluster File System, 이하 CFS로 표기)을 설계 및 구현한다. CFS는 리눅스 파일 시스템 위에 사용자 수준에서 구현된 시스템으로 사용자에게는 단일 시스템 이미지를 제공한다. 내부적으로는 대용량의 파일이 분산되어 저장되며 이를 위해 파일/디렉토리 정보도 각각의 노드에서 분산 관리된다. 사용자에게는 응용 프로그램의 개발이 용이하도록 API가 제공되며, 또한 CFS를 관리하기 위한 도구들이 제공된다.

  • PDF