• 제목/요약/키워드: Field-scale model

검색결과 958건 처리시간 0.028초

LARGE SCALE MAGNETOGENESIS THROUGH RADIATION PRESSURE

  • LANGER MATHIEU;PUGET JEAN-LOUP;AGHANIM NABILA
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.553-556
    • /
    • 2004
  • We present a new model for the generation of magnetic fields on large scales occurring at the end of cosmological reionisation. The inhomogeneous radiation provided by luminous sources and the fluctuations in the matter density field are the major ingredients of the model. More specifically, differential radiation pressure acting on ions and electrons gives rise to electric currents which induce magnetic fields on large scales. We show that on protogalactic scales, this process is highly efficient, leading to magnetic field amplitudes of the order of $10^{-1l}$ Gauss. While remaining of negligible dynamical impact, those amplitudes are million times higher than those obtained in usual astrophysical magnetogenesis models. Finally, we derive the relation between the power spectrum of the generated field and the one of the matter density fluctuations. We show in particular that magnetic fields are preferably created on large (galactic or cluster) scales. Small scale magnetic fields are strongly disfavoured, which further makes the process we propose an ideal candidate to explain the origin of magnetic fields in large scale structures.

스파크 음원을 이용한 장벽의 회절음장에 관한 실험 연구 (Experimental Study on Sound Diffraction over Barrier Using a Spark Discharge Sound Source)

  • 주진수
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.466-471
    • /
    • 1999
  • The prediction methods of diffraction field in barrier has beenreported much about the infinite length barrier and it is very few work that reasonable sound source was used in experiment. This study, however, has worked about the several model barrier with acoustic scale model experiment. In the case of scale model experiment, it is difficult to use the kind of source with sufficiently characteristics. A spark discharge sound source with the high repeatability, broad band spectra, small size and omnidirectivity has veen used for the prediction of diffraction field. Several model barriers with different length on the ground were considered for the experiment and compared with the the results calculated by the approximation.

  • PDF

Ro/Ro 여객선 차량갑판의 화재 특성에 관한 수치 해석 연구 (A Numerical Study of Fire Development Characteristics on a Ro/Ro Ferry Vehicle Deck.)

  • 김성찬;유홍선
    • 대한조선학회논문집
    • /
    • 제41권5호
    • /
    • pp.48-54
    • /
    • 2004
  • The present study investigates the fire development characteristics on a Ro-Ro ferry vehicle using the modified FDS code considering droplet break-up. Numerical simulations are compared with model-scale tests for validation of field model. The predicted results such as smoke layer temperature and oxygen concentration are in good agreement with model-scale tests. Also, it is shown that water spray systems are very effective to control the fire development on a vehicle deck. These numerical simulations using a field model may be helpful in accomplishing the fire safety for marine vehicle.

A comparative investigation of the TTU pressure envelope -Numerical versus laboratory and full scale results

  • Bekele, S.A.;Hangan, H.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.337-346
    • /
    • 2002
  • Wind tunnel pressure measurements and numerical simulations based on the Reynolds Stress Model (RSM) are compared with full and model scale data in the flow area of impingement, separation and wake for $60^{\circ}$ and $90^{\circ}$ wind azimuth angles. The phase averaged fluctuating pressures simulated by the RSM model are combined with modelling of the small scale, random pressure field to produce the total, instantaneous pressures. Time averaged, rsm and peak pressure coefficients are consequently calculated. This numerical approach predicts slightly better the pressure field on the roof of the TTU (Texas Tech University) building when compared to the wind tunnel experimental results. However, it shows a deviation from both experimental data sets in the impingement and wake regions. The limitations of the RSM model in resolving the intermittent flow field associated with the corner vortex formation are discussed. Also, correlations between the largest roof suctions and the corner vortex "switching phenomena" are observed. It is inferred that the intermittency and short duration of this vortex switching might be related to both the wind tunnel and numerical simulation under-prediction of the peak roof suctions for oblique wind directions.

환경영향평가용 대기질 모델을 위한 AWS자료의 4 차원 동화 기법에 관한 고찰 (On the applications of AWS into the Four-Dimensional Data Assimllation Technique for 3 Dimensional Air Quality Model in Use of Atmospheric Environmental Assessment)

  • 김철희
    • 환경영향평가
    • /
    • 제11권2호
    • /
    • pp.109-116
    • /
    • 2002
  • The diagnostic and prognostic methods for generating 3 dimensional wind field were comparatively analyzed and 4 dimensional data assimilation (FDDA) technique by incorporating Automatic Weather System (AWS) into the prognostic methods was discussed for the urban scale air quality model. The A WS covered the urban scale grid distance of 10.6 km and 4.3 km in South Korea and Kyong-in region, respectively. This is representing that AWS for FDDA could be fairly well accommodated in prognostic model with the meso${\gamma}$~ microa scale (~5 km), indicating that the 3 dimensional wind field by FDDA technique could be a useful interpretative tool in urban area for the atmospheric environmental impact assessment.

국지예보모델에서 고해상도 마이크로파 위성자료(MHS) 동화에 관한 연구 (A Study on the Assimilation of High-Resolution Microwave Humidity Sounder Data for Convective Scale Model at KMA)

  • 김혜영;이은희;이승우;이용희
    • 대기
    • /
    • 제28권2호
    • /
    • pp.163-174
    • /
    • 2018
  • In order to assimilate MHS satellite data into the convective scale model at KMA, ATOVS data are reprocessed to utilize the original high-resolution data. And then to improve the preprocessing experiments for cloud detection were performed and optimized to convective-scale model. The experiment which is land scattering index technique added to Observational Processing System to remove contaminated data showed the best result. The analysis fields with assimilation of MHS are verified against with ECMWF analysis fields and fit to other observations including Sonde, which shows improved results on relative humidity fields at sensitive level (850-300 hPa). As the relative humidity of upper troposphere increases, the bias and RMSE of geopotential height are decreased. This improved initial field has a very positive effect on the forecast performance of the model. According to improvement of model field, the Equitable Threat Score (ETS) of precipitation prediction of $1{\sim}20mm\;hr^{-1}$ was increased and this impact was maintained for 27 hours during experiment periods.

On the Large Eddy Simulation of Scalar Transport with Prandtl Number up to 10 Using Dynamic Mixed Model

  • Na Yang
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.913-923
    • /
    • 2005
  • The dynamic mixed model (DMM) combined with a box filter of Zang et. al. (1993) has been generalized for passive scalar transport and applied to large eddy simulation of turbulent channel flows with Prandtl number up to 10. Results from a priori test showed that DMM is capable of predicting both subgrid-scale (SGS) scalar flux and dissipation rather accurately for the Prandtl numbers considered. This would suggest that the favorable feature of DMM, originally developed for the velocity field, works equally well for scalar transport problem. The validity of the DMM has also been tested a posteriori. The results of the large eddy simulation showed that DMM is superior to the dynamic Smagorinsky model in the prediction of scalar field and the model performance of DMM depends to a lesser degree on the ratio of test to grid filter widths, unlike in the a priori test.

HOW MUCH DOES A MAGNETIC FLUX TUBE EMERGE INTO THE SOLAR ATMOSPHERE?

  • Magara, Tetsuya
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.84.2-84.2
    • /
    • 2012
  • We studied the controlling parameters of flux emergence with a focus on the relation between the configuration of coronal magnetic field and the pre-emeged state of subsurface magnetic field. We performed a series of magnetohydrodynamic simulations (dynamic model) and find an interesting result on the twist of coronal magnetic field, that is, the coronal magnetic field formed via flux emergence actually contains less amount of twist (relative magnetic helicity normalized by magnetic flux) than what is expected in kinematic models for global-scale solar eruptions. Based on this result, we propose another possible mechanism for producing these global-scale solar eruptions.

  • PDF

Extrapolation of wind pressure for low-rise buildings at different scales using few-shot learning

  • Yanmo Weng;Stephanie G. Paal
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.367-377
    • /
    • 2023
  • This study proposes a few-shot learning model for extrapolating the wind pressure of scaled experiments to full-scale measurements. The proposed ML model can use scaled experimental data and a few full-scale tests to accurately predict the remaining full-scale data points (for new specimens). This model focuses on extrapolating the prediction to different scales while existing approaches are not capable of accurately extrapolating from scaled data to full-scale data in the wind engineering domain. Also, the scaling issue observed in wind tunnel tests can be partially resolved via the proposed approach. The proposed model obtained a low mean-squared error and a high coefficient of determination for the mean and standard deviation wind pressure coefficients of the full-scale dataset. A parametric study is carried out to investigate the influence of the number of selected shots. This technique is the first of its kind as it is the first time an ML model has been used in the wind engineering field to deal with extrapolation in wind performance prediction. With the advantages of the few-shot learning model, physical wind tunnel experiments can be reduced to a great extent. The few-shot learning model yields a robust, efficient, and accurate alternative to extrapolating the prediction performance of structures from various model scales to full-scale.

시멘트풀의 영향을 고려한 축소모형 매입말뚝의 거동분석 (The Analysis of Skin Friction on Small-scale Prebored and Precast Piles Considering Cement Milk Influence)

  • 박종전;정경자;정상섬
    • 한국지반공학회논문집
    • /
    • 제33권1호
    • /
    • pp.5-15
    • /
    • 2017
  • 주면마찰력은 매입말뚝에서 가장 큰 영향 요소이다. 특히 시멘트풀과 지반 사이의 인터페이스 거동에 있어 가장 큰 영향을 미친다. 본 연구에서는 시멘트 풀 영향을 고려하여 단독말뚝에 대한 현장축소모형말뚝 재하시험을 수행하였다. 시험말뚝은 상사비를 고려하여 길이 1.3m 지름 0.067m로 선정하였으며, 굴착공경은 150, 125, 90, 86, 74mm, 시멘트풀 물/시멘트비는 90, 70, 60%로 급속재하시험을 수행하였다. 분석 결과 굴착공경이 증가할수록 지지력 증가를 확인하였다. 또한, 물/시멘트비가 부배합일수록 지지력이 증가하는 것을 확인하였다. 상사비를 고려한 축소모형시험결과, 굴착 공경은 말뚝지름(0.508mm 기준)보다 대략 0.1~0.4D(50~200mm) 크게 시공하는 것이 적합하다. 그리고 시멘트풀 물/시멘트비는 본 연구 결과와 품질관리 등을 고려하였을 때, 70% 정도가 적절하다.