• Title/Summary/Keyword: Field-scale model

Search Result 958, Processing Time 0.033 seconds

SPACE WEATHER RESEARCH BASED ON GROUND GEOMAGNETIC DISTURBANCE DATA (지상지자기변화기록을 이용한 우주천기연구)

  • AHN BYUNG-HO
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.1-13
    • /
    • 2000
  • Through the coupling between the near-earth space environment and the polar ionosphere via geomagnetic field lines, the variations occurred in the magnetosphere are transferred to the polar region. According to recent studies, however, the polar ionosphere reacts not only passively to such variations, but also plays active roles in modifying the near-earth space environment. So the study of the polar ionosphere in terms of geomagnetic disturbance becomes one of the major elements in space weather research. Although it is an indirect method, ground magnetic disturbance data can be used in estimating the ionospheric current distribution. By employing a realistic ionospheric conductivity model, it is further possible to obtain the distributions of electric potential, field-aligned current, Joule heating rate and energy injection rate associated with precipitating auroral particles and their energy spectra in a global scale with a high time resolution. Considering that the ground magnetic disturbances are recorded simultaneously over the entire polar region wherever magnetic station is located, we are able to separate temporal disturbances from spatial ones. On the other hand, satellite measurements are indispensible in the space weather research, since they provide us with in situ measurements. Unfortunately it is not easy to separate temporal variations from spatial ones specifically measured by a single satellite. To demonstrate the usefulness of ground magnetic disturbance data in space weather research, various ionospheric quantities are calculated through the KRM method, one of the magneto gram inversion methods. In particular, we attempt to show how these quantities depend on the ionospheric conductivity model employed.

  • PDF

The Effect of Similarity Condition for the Test Results in a Wind Tunnel Test (풍동실험에서 상사조건이 실험결과에 미치는 영향에 관한 연구)

  • 봉춘근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.351-362
    • /
    • 2000
  • To set the similarity conditions between a prototype usually in the field and its reduced-scale model is a crucial part in model tests. No technique is available to keep perfect similarity for this procedure so far. The experimental work using a wind tunnel is not exceptional. based on the field measurements, the effect of stack parameters and wind conditions on the dispersion of stack plume has been investigated in the laboratory. in this paper intensive methodology is focused on matching these similarities. Due to the limitations to keep perfect similarity conditions some simplifications are involved in common. In this study geometric conditions and kinematic conditions using Froude number and Reynolds number have been con-sidered to keep the similarity conditions required. From the tests it is found that the critical Reynolds number (Recrit) is 2,700 when the height of stack discharge is 50mm. The dispersion has a similar trend for the higher Reynolds number than the critical Reynolds number. It is also found that different Froude number does not make any significant influence for the normalized tracer gas concentrations at the recipient providing the same ratio of the wind speed to the discharge speed. No significant effect of stack diameter is observed in the normalized tracer gas concentrations with the same Frounde number. The similarity conditions therefore used in this study are reliable to simulate the conditions in prototype into the wind tunnel tests.

  • PDF

Crack-tip constraint analysis of two collinear cracks under creep condition

  • Jiao, Guang-Chen;Wang, Wei-Zhe;Jiang, Pu-Ning
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.311-320
    • /
    • 2012
  • The higher-order asymptotic C(t) - $A_2(t)$ approach was employed to investigate the crack-tip stress of two collinear cracks in a power-law creeping material under the plane strain conditions. A comprehensive calculation was made of the single crack, collinear crack model with S/a = 0.4 and 0.8, by using the C(t) - $A_2(t)$ approach, HRR-type field and the finite element analysis; the latter two methods were used to check the constraint significance and the calculation accuracy of the C(t) - $A_2(t)$ approach, respectively. With increasing the creep time, the constraint $A_2$ was exponentially increased in the small-scale creep stage, while no discernible dependency of the constraint $A_2$ on the creep time was found at the extensive creep state. In addition, the creep time and the mechanical loads have no distinct influence on accuracy of the results obtained from the higher-order asymptotic C(t) - $A_2(t)$ approach. In comparison with the HRR-type field, the higher-order asymptotic C(t) - $A_2(t)$ solution matches well with the finite element results for the collinear crack model.

Measurements of Scattering Coefficients Using the ISO Method in a Model Reverberation Chamber (ISO 방법론을 이용한 축소 잔향실에서의 확산계수 측정)

  • 전진용;이성찬;류종관
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.162-168
    • /
    • 2003
  • The degree of diffusion, characterized by the "scattering coefficient" of surface materials, has been known to be one of the most important factors in determining the acoustical qualities of concert halls. Based on the suggested ISO method, which measures the random-incidence scattering coefficient of surfaces in a diffuse field, the scattering coefficients of different sizes and densities of wooden hemispheres and cubes were measured in model-scale reverberation rooms. As a result, wooden hemispheres with a structural depth of more than 15㎝ have the highest average (500㎐∼4㎑) scattering coefficient. It was also found that the scattering coefficient becomes higher when the diffuser density reaches about 50% for hemispheres and 30% for cubes.

Effect of Partial Flow Reductions on DNAPL Source Dissolution Rate

  • Park, Eung-Yu;ParKer, Jeck C.
    • Proceedings of the KSEEG Conference
    • /
    • 2005.04a
    • /
    • pp.148-151
    • /
    • 2005
  • Field-scale DNAPL dissolution is controlled by the topology of DNAPL distributions with respect to the velocity field. A high resolution percolation model was developed and employed to simulate the distribution of DNAPL within source zones. Statistically anisotropic permeability values and capillary parameters were generated for 10${\times}$10${\times}$10 m domains at a resolution of 0.05 to 0.1 m for various statistical properties. TCE leakage was simulated at various rates and the distribution of residual DNAPL in 'fingers' and 'lenses' was computed. Variations in finger and lens geometries, frequencies, average DNAPL saturations, and overall source topology were predicted to be strongly influenced by statistical properties of the medium as well as by injection rate and fluid properties. Model results were found to be consistent with observations from controlled DNAPL release experiments reported in the literature. The computed distributions of aquifer properties and DNAPL were utilized to perform high-resolution numerical simulations of groundwater flow and dissolved transport. Simulations were performed to assess the effect of grout or foam injection in bore holes within the source zone and of shallow point-releases of fluids with various properties on dissolution in DNAPL dissolution rate, even for widely spaced injection points. The results indicate that measures that induced partial flow reductions through DNAPL source zones can significantly decrease dissolution rates from residual DNAPL. The benefit from induced partial flow reductions is two-fold: 1) local flow reduction in DNAPL contaminated zones reduces mass transfer rates, and 2) contaminant flux reductions occur due to the decrease in groundwater velocity

  • PDF

3-D Axisymmetric Fluid-Structure-Soil Interaction Analysis Using Mixed-Fluid-Element and Infinite-Element (혼합형 유체요소와 무한요소를 이용한 3차원 축대칭 유체-구조물-지반 상호작용해석)

  • 김재민;장수혁;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.257-266
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on/in horizontally layered half.space considering the effects of the interior fluid and exterior soil medium in the frequency domain. To capture the essence of fluid-structure-soil interaction effects effectively, a mixed finite element with two-field (u, p) approximation is employed to model the compressive inviscid fluid, while the structure and soil medium are presented by the 3-D axisymmetric finite elements and dynamic infinite elements. The present FE-based method can be applied to the system with complex geometry of fluid region as well as with inhomogeneous near-field soil medium, since it can directly model both the fluid and the soil. For the purpose of verification, dominant peak frequencies in transfer functions for horizontal motions of cylindrical fluid storage tanks with rigid massless foundation on a homogeneous viscoelastic half.space are compared with those by two different added mass approaches for the fluid motion. The comparison indicates that the Present FE-based methodology gives accurate solution for the fluid-structure-soil interaction problem. Finally, as a demonstration of versatility of the present study, a seismic analysis for a real-scale LNG storage tank embedded in layered half.space is carried out, and its member forces along the height of the structure are compared with those by an added mass approach developed by the present writers.

  • PDF

Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Iron Nuclei

  • Ryu, Dongsu;Kang, Hyesung;Das, Santabrata
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.78.2-78.2
    • /
    • 2012
  • We have studied how the intergalactic magnetic field (IGMF) affects the propagation of super-GZK iron nuclei that originate from extragalactic sources within the local GZK sphere. Toward this end, we set up hypothetical sources of ultra-high-energy cosmic-rays (UHECRs), virtual observers, and the magnetized cosmic web in a model universe constructed from cosmological structure formation simulations. We then arranged a set of reference objects at high density region to represent astronomical objects formed in the large scale structure (LSS). With our model IGMF, the paths of UHE iron nuclei are deflected on average by about 70 degrees, which might indicate a nearly isotropic distribution of arrival directions. However, the separation angle between the arrival directions and the nearest reference object on the LSS is only ~6 degrees, which is twice the mean distance to the nearest neighbors among the reference objects. This means that the positional correlation of observed UHE iron events with their true sources would be erased by the IGMF, but the correlation with the LSS itself is to be sustained. We discuss implications of our findings for correlations studies of real UHECR events.

  • PDF

Hot Spot Detection of Thermal Infrared Image of Photovoltaic Power Station Based on Multi-Task Fusion

  • Xu Han;Xianhao Wang;Chong Chen;Gong Li;Changhao Piao
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.791-802
    • /
    • 2023
  • The manual inspection of photovoltaic (PV) panels to meet the requirements of inspection work for large-scale PV power plants is challenging. We present a hot spot detection and positioning method to detect hot spots in batches and locate their latitudes and longitudes. First, a network based on the YOLOv3 architecture was utilized to identify hot spots. The innovation is to modify the RU_1 unit in the YOLOv3 model for hot spot detection in the far field of view and add a neural network residual unit for fusion. In addition, because of the misidentification problem in the infrared images of the solar PV panels, the DeepLab v3+ model was adopted to segment the PV panels to filter out the misidentification caused by bright spots on the ground. Finally, the latitude and longitude of the hot spot are calculated according to the geometric positioning method utilizing known information such as the drone's yaw angle, shooting height, and lens field-of-view. The experimental results indicate that the hot spot recognition rate accuracy is above 98%. When keeping the drone 25 m off the ground, the hot spot positioning error is at the decimeter level.

No-reference Image Blur Assessment Based on Multi-scale Spatial Local Features

  • Sun, Chenchen;Cui, Ziguan;Gan, Zongliang;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4060-4079
    • /
    • 2020
  • Blur is an important type of image distortion. How to evaluate the quality of blurred image accurately and efficiently is a research hotspot in the field of image processing in recent years. Inspired by the multi-scale perceptual characteristics of the human visual system (HVS), this paper presents a no-reference image blur/sharpness assessment method based on multi-scale local features in the spatial domain. First, considering various content has different sensitivity to blur distortion, the image is divided into smooth, edge, and texture regions in blocks. Then, the Gaussian scale space of the image is constructed, and the categorized contrast features between the original image and the Gaussian scale space images are calculated to express the blur degree of different image contents. To simulate the impact of viewing distance on blur distortion, the distribution characteristics of local maximum gradient of multi-resolution images were also calculated in the spatial domain. Finally, the image blur assessment model is obtained by fusing all features and learning the mapping from features to quality scores by support vector regression (SVR). Performance of the proposed method is evaluated on four synthetically blurred databases and one real blurred database. The experimental results demonstrate that our method can produce quality scores more consistent with subjective evaluations than other methods, especially for real burred images.

Effects of Wind Stress Curl, Topography, and Stratification on the Basin-scale Circulations in a Stratified Lake (바람의 회전응력, 지형, 그리고 성층화가 성층 호수의 물 순환에 미치는 영향)

  • Chung, Se-Woong;Schladow, S.G.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.53-53
    • /
    • 2015
  • Basin-scale motions in a stratified lake rely on interactions of spatially and temporally varying wind force, bathymetry, density variation, and earth's rotation. These motions provide a major driving force for vertical and horizontal mixing of inorganic and organic materials, dissolved oxygen, storm water and floating debris in stratified lakes. In Lake Tahoe, located between California and Nevada, USA, basin-scale circulations are obviously important because they are directly associated with the fate of the suspended particulate materials that degrade the clarity of the lake. A three-dimensional hydrodynamic model, ELCOM, was applied to Lake Tahoe to investigate the underlying mechanisms that determine the characteristics of basin-scale circulations. Numerical experiments were designed to examine the relative effects of various mechanisms responsible for the horizontal circulations for two different seasons, summer and winter. The unique double gyre, a cyclonic northern gyre and an anti-cyclonic southern gyre, occurred during the winter cooling season when wind stress curl, stratification, and Coriolis effect were all incorporated. The horizontal structure of the upwelling and downwelling formed due to basin-scale internal waves found to be closely related to the rotating direction of each gyre. In the summer, the spatially varying wind field and the Coriolis effect caused a dominant anti-cyclonic gyre to develop in the center of the lake. In the winter, a significant wind event excited internal waves, and a persistent (2 week long) cyclonic gyre formed near the upwelling zone. Mechanism of the persistent cyclonic gyre is explained as a geostrophic circulation ensued by balancing of the baroclinc pressure gradient (or baroclinic instability) and Coriolis effect. Topographic effect, examined by simulating a flat bathymetry with constant depth of 300m, was found to be significant during the winter cooling season but not as significant as the wind curl and baroclinic effects.

  • PDF