• Title/Summary/Keyword: Field symmetry

Search Result 213, Processing Time 0.025 seconds

ZORA DFT Calculation of $^{11}$B Electric Field Gradient Tensor for Lithium Borates

  • Woo, Ae-Ja;Wasylishen, Roderick E.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.8 no.2
    • /
    • pp.70-76
    • /
    • 2004
  • ZORA-DFT calculations of $^{11}$B EFG (electric field gradient) tensors for lithium borates, LiB$_3O_5$ (LBO) and Li$_2B_4O_7$ (LTB), were performed. The calculated values of 11B quadrupole coupling constant and asymmetry parameter are in good agreement with the experimental values. The sign of the quadrupole coupling constant for the tetrahedral boron site was deduced from the distortion from the ideal tetrahedral symmetry.

  • PDF

Computer Simulation of Sensing Current Effects on the Magnetic and Magnetoresistance Properties of a Crossed Spin-Valve Read

  • Lim, S.H;Han, S.H;Shin, K.H;Kim, H.J
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.44-49
    • /
    • 2000
  • Computer simulation of sensing current effects on the magnetic and magnetoresistance properties of a crossed spin-valve head is carried out. The spin-valve head has the following layer structure: Ta (8.0 nm)/NiMn (25 nm)/NiFe (2.5 nm)/Cu (3.0 nm)/NiFe (5.5 nm)/Ta (3.0 nm), and it is 1500 nm long and 600 nm wide. Even with a high pinning field of 300 Oe and a high hard-biased field of 50 Oe, the ideal crossed spin-valve structure, which is essential to the symmetry of the output signal and hence high density recording, is not realized mainly due to large interlayer magnetostatic interactions. This problem is solved by applying a suitable magnitude of sensing currents along the length direction generating magnetic fields in the width direction. The ideal spin-valve head is expected to show good symmetry of the output signal. This has not been shown explicitly in the present simulation, however, The reason for this is possibly related to the simple assumption used in this calculation that each magnetic layer consists of a single domain.

  • PDF

SWR as Tool for Determination of the Surface Magnetic Anisotropy Energy Constant

  • Maksymowicz, L.J.;Lubecka, M.;Jablonski, R.
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.105-111
    • /
    • 1998
  • The low energy excitations of spin waves (SWR) in thin films can be used for determination of the surface anisotropy constant and the nonhomogeneities of magnetization in the close-to-surface layer. The dispersion relation in SWR is sensitive on the geometry of experiment. We report on temperature dependence of surface magnetic anisotropy energy constant in magnetic semiconductor thin films of$ CdCr_{2-2x}In_{2x}Se_4$ at spin glass state. Samples were deposited by rf sputtering technique on Corning glass substrate in controlled temperature conditions. Coexistence of the infinite ferromagnetic network (IFN) and finite spin slusters (FSC) in spin glass state (SG) is know phenomena. Some behavior typical for long range magnetic ordering is expected in samples at SG state. The spin wave resonance experiment (microwave spectrometer at X-band) with excited surface modes was applied to describe the energy state of surface spins. We determined the surface magnetic anisotropy energy constant versus temperature using the surface inhomogeneities model of magnetic thin films. It was found that two components contribute to the surface magnetic anisotropy energy. One originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the stray field of the surface roughness. The second one comes from the demagnetizing field of close-to surface layer with grad M. Both term linearly decrease when temperature is increased from 5 to 123 K, but dominant contribution is from the first component.

  • PDF

27Al and 87Rb Nuclear Magnetic Resonance Study of the Relaxation Mechanisms of RbAl(CrO4)2·2H2O Single Crystals

  • Kim, Jae Sung;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.111-121
    • /
    • 2012
  • The spin-lattice relaxation times, $T_1$, and spin-spin relaxation times, $T_2$, of the $^{27}Al$ and $^{87}Rb$ nuclei in $RbAl(CrO_4)_2{\cdot}2H_2O$ crystals were investigated. The presence of only one resonance line for the $^{27}Al$ nuclei indicates that the results in a dynamical averaging of the crystal electric field that produces a cubic symmetry field. The changes in the temperature dependence of $T_1$ are related to variations in the symmetry of the octahedra of water molecules surrounding $Al^+$ and $Rb^+$. The $T_1$ values for the $^{27}Al$ and $^{87}Rb$ nuclei are different due to differences in the local environments of these ions. We also compared these $^{27}Al$ and $^{87}Rb$ NMR results with those obtained for $RbAl(CrO_4)_2{\cdot}2H_2O$ crystals. The relaxation mechanisms of $RbAl(XO_4)_2{\cdot}nH_2O$ (X=Cr and S) crystals are characterized by completely different NMR behaviors.

NMR Chemical Shift for a 4d$^1$ system when the Threefold Axis is Chosen to be the Axis of Quantization

  • Ahn, Sang-Woon;Yuk, Geun-Young;Ro, Seung-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.89-96
    • /
    • 1986
  • The NMR chemical shift arising from 4d electron angular momentum and 4d electron spin dipolar-nuclear spin angular momentum interaction for a $4d^1$ system in a strong crystal field of octahedral symmetry, when the threefold axis is chosen as the quantization axis, has been investigated. A general expression using a nonmultipole expansion method is derived for the NMR chemical shift. From this expression all the multipolar terms are determined. We find that the nonmultipolar results for the NMR chemical shift ${\Delta}B$, is exactly in agreement with the multipolar results when $R {\ge} 0.20$ nm. It is also found that the 1/$R^7$ term contributes to the NMR chemical shift almost the same as the 1/$R^5$ in magnitude. The temperature dependence analysis of ${\Delta}B$/B(ppm) at various values of R shows that the 1/$T^2$ term has the dominant contribution to the NMR chemical shift but the contributions of other two terms are certainly significant for a $4d^1$ system in a strong crystal field of octahedral symmetry when the threefold axis is chosen to be the axis of quantization.

NMR Chemical Shift for 4d$^n$System (Ⅳ). Calculation of NMR Chemical Shift for 4d$^2$ System in a Strong Crystal Field Environment of Octahedral Symmetry

  • Ahn, Sang-Woon;Oh, Se-Woong;Yang, Jae-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.5
    • /
    • pp.255-259
    • /
    • 1985
  • The NMR chemical shift arising from 4d electron orbital angular momentum and 4d electron spin dipolar-nuclear Spin angular momentum interactions for a $4d^2$ system in a strong crystal field environment of octahedral symmetry has been investigated when the four fold axis is taken as the quantization axis. The NMR results are comparted with the multipolar shift at various R-values and we find that the exact results are in agreement with the multipolar shift when $R{\geqslant}0.20 nm.$ We also separate the NMR shift into the contribution of the $1/R^5$ and $1/R^7$ terms. It is found that the contribution of the $1/R^5$term to the NMR shift is dominant than the contribution of the $1/R^7$ term. Temperature dependence analysis shows that the $1/T^2$ term is the dominant contribution to the NMR shift for a $4d^2$ system but the contribution of the 1/T term may not negligible. The similar results are obtained for a $4d^1$ system from the temperature dependence analysis.

Reliability for Multiple Reviewers by using Loglinear Models (로그선형모형을 이용한 복수 평가자들간의 신뢰도에 관한 연구)

  • Park, Byung-Joo;Lee, Sung-Im;Lee, Young-Jo;Kim, Dong-Hyun;Kwon, Ho-Jang;Bae, Jong-Myon;Shin, Myung-Hee;Ha, Mi-Na;Han, Sang-Whan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.4 s.59
    • /
    • pp.719-728
    • /
    • 1997
  • To guarantee the inter-reviewer reliability is very important in evaluating the quality of large number of clinical research papers by multiple reviewers. We cannot find reports on statistical methods for evaluating reliability for multiple raters in clinical research field. The purpose of this paper is to introduce the statistical methods focused on kappa statistic and five kinds of loglinear models for, which can be applied when evaluating the reliability of multiple raters. We have applied these methods to the result of a project, in which seven reviewers have evaluated the quality of 33 papers with regard to four aspects of paper contents including study hypothesis, study design, study population, study method, data analysis and interpretation. Among the five loglinear models including Symmetry model, Conditional symmetry model, Quasi-symmetry model, Independence model, and Quasi-independence model, Quasi-symmetry model shows the best model of fitting. And the level of reliability among seven reviewers revealed to be acceptable as meaningful.

  • PDF

The Control of the Magnetic Field around Down Conductors (인하도선 주변에서 발생하는 자장의 억제)

  • Lee, Bok-Hee;Kang, Sung-Man;Lee, Seung-Chil;Eom, Ju-Hong;Lee, Kyoung-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.216-218
    • /
    • 2001
  • This paper deals with the control of magnetic field around the down conductor of lightning protection systems. The magnetic field strength in the vicinity of down conductor is shown to drop off rapidly with distance from the down conductor and is reversely proportional to the number of down conductor. Also the magnetic field strength is decreased in the structures as the down conductor is installed with the symmetrical arrangement, and it is zero at the center of symmetry. The magnetic field strengths for the symmetrical arrangement of two down conductors are less than one half compared with that for a down conductor. A proper arrangement of down conductor can reduce or cancel the magnetic field in a restricted place where information-oriented and computerized facilities are densely installed.

  • PDF

Magnetic Properties of SrRuO3 Thin Films Having Different Crystal Symmetries

  • Kim, Jin-I;Jung, C.U.
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.57-60
    • /
    • 2008
  • This study examined the effect of various types of epitaxial strain on the magnetic properties of $SrRuO_3$ thin films. Epitaxial $SrTiO_3$ (001), $SrTiO_3$ (110), and $SrTiO_3$ (111) substrates were used to apply different crystal symmetries to the grown films. The films were grown using pulsed laser deposition. The X-ray diffraction patterns of the films grown under optimum conditions showed very clear peaks for the $SrRuO_3$ film and $SrTiO_3$ substrates. The saturated magnetic moment at 5 K after 7 Tesla field cooling was $1.2-1.4\;{\mu}_B$/Ru. The magnetic easy axis for all three types of films was along the surface normal. The magnetic transition temperature for the $SrRuO_3$ film with lower symmetry was slightly larger than the $SrRuO_3$ film with higher symmetry.

Coherent Radiation in A Very Thin Ferromagnetic Film

  • Nam, Seog-Woo
    • Journal of Magnetics
    • /
    • v.8 no.3
    • /
    • pp.103-107
    • /
    • 2003
  • Relaxation of magnon in a very thin ferromagnetic film through spontaneous emission of photon shows an enhancement of the decay rate due to the phase coherence between the magnon and the planar component of wave vector of photon. The coupling between magnon and photon under a strong external magnetic field is considered only at the lowest order one-magnon one-photon process, which we believe the most dominant channel for the radiation from the system. Theoretical understanding related to the geometric confinement is pursued; the phase coherence due to the crystal symmetry in the film plane gives rise to superradiative emission on one hand, but the symmetry breaking along the direction perpendicular to the film renders the possibility of emission itself, providing the increased degrees of freedom for the photon.