DOI QR코드

DOI QR Code

27Al and 87Rb Nuclear Magnetic Resonance Study of the Relaxation Mechanisms of RbAl(CrO4)2·2H2O Single Crystals

  • Kim, Jae Sung (Department of Carbon Fusion Engineering, Jeonju University) ;
  • Lim, Ae Ran (Department of Carbon Fusion Engineering, Jeonju University)
  • Received : 2012.05.29
  • Accepted : 2012.12.10
  • Published : 2012.12.20

Abstract

The spin-lattice relaxation times, $T_1$, and spin-spin relaxation times, $T_2$, of the $^{27}Al$ and $^{87}Rb$ nuclei in $RbAl(CrO_4)_2{\cdot}2H_2O$ crystals were investigated. The presence of only one resonance line for the $^{27}Al$ nuclei indicates that the results in a dynamical averaging of the crystal electric field that produces a cubic symmetry field. The changes in the temperature dependence of $T_1$ are related to variations in the symmetry of the octahedra of water molecules surrounding $Al^+$ and $Rb^+$. The $T_1$ values for the $^{27}Al$ and $^{87}Rb$ nuclei are different due to differences in the local environments of these ions. We also compared these $^{27}Al$ and $^{87}Rb$ NMR results with those obtained for $RbAl(CrO_4)_2{\cdot}2H_2O$ crystals. The relaxation mechanisms of $RbAl(XO_4)_2{\cdot}nH_2O$ (X=Cr and S) crystals are characterized by completely different NMR behaviors.

Keywords

References

  1. F. Gronvold, K.K. Meisingset, J. Chem. Thermodynamics 14, 1083, (1982). https://doi.org/10.1016/0021-9614(82)90152-5
  2. S. Radhakrishna, B.V.R. Chowdari, A.K. Viswanath, J. Chem. Phys. 66, 2009, (1977). https://doi.org/10.1063/1.434158
  3. R. Bohmer, P. Lunkenheimer, J. K. Vij, I. Svare, J. Phys.: Condens. Matter 2, 5433, (1999).
  4. A. Sekine, M. Sumita, T. Osaka, Y. Makita, J. Phys. Soc. Japan 57, 4004, (1988). https://doi.org/10.1143/JPSJ.57.4004
  5. P. P. Gravereau, A. Hardy, Acta Cryst. B 28, 2333, (1972). https://doi.org/10.1107/S0567740872006077
  6. Y. Cudennec, A. Riou, C.R. Acad. Sci. Paris, Ser. C 284, 565, (1977).
  7. A. Bonnin, A. Hardy, A. Lecerf, C. R. Acad. Sci. Paris. Ser. C 266, 1227, (1968).
  8. A. Hardy, P. Gravereau, C. R. Acad. Sci. Paris, Ser. C 271, 1304, (1970).
  9. A. Hardy, F. Gaboriaud, Acta Cryst. B 28, 2329, (1972). https://doi.org/10.1107/S0567740872006065
  10. SMART and SAINT-Plus v6.22, Bruker AXS., Madison, Wisconsin, USA, 2000.
  11. E.R. Andrew, D.P. Tunstall, Proc. Phys. Soc. 78, 1, (1961). https://doi.org/10.1088/0370-1328/78/1/302
  12. A. Avogadro, E. Cavelius, D. Muller, J. Petersson, Phys. Stat. Sol. (b) 44, 639, (1971). https://doi.org/10.1002/pssb.2220440222
  13. K.H. Kim, D.R. Torgeson, F. Borsa, S.W. Martin, Solid State Ionics 90, 29 (1996). https://doi.org/10.1016/S0167-2738(96)00401-8
  14. A.R. Lim, Solid State Nucl. Mag. Reson. 36, 45, (2009). https://doi.org/10.1016/j.ssnmr.2009.05.002