Browse > Article
http://dx.doi.org/10.6564/JKMRS.2012.16.2.111

27Al and 87Rb Nuclear Magnetic Resonance Study of the Relaxation Mechanisms of RbAl(CrO4)2·2H2O Single Crystals  

Kim, Jae Sung (Department of Carbon Fusion Engineering, Jeonju University)
Lim, Ae Ran (Department of Carbon Fusion Engineering, Jeonju University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.16, no.2, 2012 , pp. 111-121 More about this Journal
Abstract
The spin-lattice relaxation times, $T_1$, and spin-spin relaxation times, $T_2$, of the $^{27}Al$ and $^{87}Rb$ nuclei in $RbAl(CrO_4)_2{\cdot}2H_2O$ crystals were investigated. The presence of only one resonance line for the $^{27}Al$ nuclei indicates that the results in a dynamical averaging of the crystal electric field that produces a cubic symmetry field. The changes in the temperature dependence of $T_1$ are related to variations in the symmetry of the octahedra of water molecules surrounding $Al^+$ and $Rb^+$. The $T_1$ values for the $^{27}Al$ and $^{87}Rb$ nuclei are different due to differences in the local environments of these ions. We also compared these $^{27}Al$ and $^{87}Rb$ NMR results with those obtained for $RbAl(CrO_4)_2{\cdot}2H_2O$ crystals. The relaxation mechanisms of $RbAl(XO_4)_2{\cdot}nH_2O$ (X=Cr and S) crystals are characterized by completely different NMR behaviors.
Keywords
61.50.Ks: Crystallographic aspects of phase transformations; 68.35.Rh:Phase transitions and critical phenomena; 76.60 k: Nuclear magnetic resonance (NMR); 77.80-e: Ferroelectricity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Gronvold, K.K. Meisingset, J. Chem. Thermodynamics 14, 1083, (1982).   DOI
2 S. Radhakrishna, B.V.R. Chowdari, A.K. Viswanath, J. Chem. Phys. 66, 2009, (1977).   DOI
3 R. Bohmer, P. Lunkenheimer, J. K. Vij, I. Svare, J. Phys.: Condens. Matter 2, 5433, (1999).
4 A. Sekine, M. Sumita, T. Osaka, Y. Makita, J. Phys. Soc. Japan 57, 4004, (1988).   DOI
5 P. P. Gravereau, A. Hardy, Acta Cryst. B 28, 2333, (1972).   DOI
6 Y. Cudennec, A. Riou, C.R. Acad. Sci. Paris, Ser. C 284, 565, (1977).
7 A. Bonnin, A. Hardy, A. Lecerf, C. R. Acad. Sci. Paris. Ser. C 266, 1227, (1968).
8 A. Hardy, P. Gravereau, C. R. Acad. Sci. Paris, Ser. C 271, 1304, (1970).
9 A. Hardy, F. Gaboriaud, Acta Cryst. B 28, 2329, (1972).   DOI
10 SMART and SAINT-Plus v6.22, Bruker AXS., Madison, Wisconsin, USA, 2000.
11 E.R. Andrew, D.P. Tunstall, Proc. Phys. Soc. 78, 1, (1961).   DOI   ScienceOn
12 A. Avogadro, E. Cavelius, D. Muller, J. Petersson, Phys. Stat. Sol. (b) 44, 639, (1971).   DOI
13 K.H. Kim, D.R. Torgeson, F. Borsa, S.W. Martin, Solid State Ionics 90, 29 (1996).   DOI
14 A.R. Lim, Solid State Nucl. Mag. Reson. 36, 45, (2009).   DOI