• Title/Summary/Keyword: Field sound transmission loss

Search Result 40, Processing Time 0.051 seconds

Sound Transmission Loss of Double Panels(I) : A Double Wall with Air Cavity (이중판의 차음손실 I)

  • 강현주;김현실;김재승;김상렬
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.945-952
    • /
    • 1997
  • This paper shows the feasibility of the suggestion that the angle distribution of incident sound to panels might be gaussian, instead of the conventional uniform distribution in the analysis of transmission loss of panels. To prove the suggestion, the problems with the diffuse sound field in a reverberation room are examined by case studies and the comparision of the prediction with the measurement of sound transmission loss of walls are performed. The results of the comparision show good agreement between the two values.

  • PDF

Sound Transmission Performance of Composite panels : Reverberation chamber vs. Cabins in Ship (복합판넬의 차음특성 비교 : 잔향실과 실선)

  • Kang, Hyun-Ju;Kim, Jae-Seung;Kim, Hyun-Sil;Kim, Sang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.843-848
    • /
    • 2000
  • This paper deals experimently with the difference between the cabins in ship-board and the reverberation chamber in sound transmission loss. Experimental results from the cabins show that there are various flanking transmission losses which deteriorate significantly the performance of the sound transmission loss. They also show that as a representative of the flanking transmission losses, sound leakages between a ceiling and a wall, the joints of the partitions, and the luminant devices play an important role. From the various measurements, it can be is concluded that unless one do not take any treatments on the flanking transmission loss, the field sound transmission loss will be considerably decreased by more than 10 dB, comparable to the sound transmission loss.

  • PDF

The Study on Correction Factor of a Small Scale Reverberation Chamber to Estimate Transmission Loss (소형 잔향실의 확산 음장 보정 계수 측정 연구)

  • Kim, Tae Min;Kim, Da Rae;Kim, Jeung Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.960-965
    • /
    • 2014
  • Transmission loss of specimen is calculated by measuring energy of incident and transmission and using reverberant room of large size. But normal measurement of transmission loss has trouble because it is actually demanded that large area and specimen of certain size is satisfied with condition of diffused sound field. Especially, in case of mechanical component, interested frequency band is mid-frequency band between 500 ~ 2k Hz, and it is used to be available to minimize a reverberation chamber under conditions satisfying acoustic one because production of specimen for transmission loss measurement has limit. But, as in semi-reverberation room, it is difficult to satisfy condition of diffuse sound field and modification factor is applied to complement that. Correction factor when measuring transmission loss using semi-reverberation chamber is required accuracy because it works as main factor determining reliability of reuslts on transmission loss. In this study, it is analyzed that an effect on correction factor based on varying materials and sizes of specimens in order to deduction of it. Also It is confirmed that applied by elicited correction factor with actual railway vehicle's floor has reliability.

  • PDF

Transmission Loss Prediction of KHST′s Wall (KHST 차량 벽면의 투과손실값 예측)

  • Kim, Kwanju;Taejung Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.317.2-317
    • /
    • 2002
  • Transmission loss of KHST passenger vehicle was calculated using measured acoustic data: In order to verify the transmission loss results for KHST case, similar experiment was carried out in laboratory condition, which result was compared those by geometric acoustic method. The computational results shows good agreement with the transmission loss magnitude from experiments. This paper also mentions items to obtain more accurate transmission loss values, i. e. how to assure reverberant field condition, the selection of source speaker' location.

  • PDF

Calculation of transmission loss design values of a high speed train wall by acoustic analysis of exterior sound field (외부음장해석에 의한 고속전철 벽면에서의 투과손실 목표치 계산)

  • 김관주;유남식
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.249-256
    • /
    • 1998
  • Design target values of transmission loss in a high-speed train wall are suggested by calculating the difference between interior and exterior noise levels of it. Exterior noise level distribution on the boundary of train wall is calculated by Sysnoise, with sound source input prepared by experiments. Two kinds of exterior sound sources are considered, the rolling noise of train wheels on the rail and the aerodynamic noise from the pantograph. Interior noise level is provided by high-speed design target. Transmission loss characteristics according to the frequency band are examined.

  • PDF

Analysis of the Sound Insertion Loss of the Enclosure for the Chilled Water Plant in a Ship (선박의 냉수제조기용 인클로우져에 대한 음향 삽입 손실 분석)

  • Han, Hyung-Suk;Jang, Cheon-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.152-157
    • /
    • 2008
  • Enclosure is widely used for the sound insulation in a ship. But it is very difficult to estimate the sound insertion loss for the enclosure because the sound field between the enclosure and the machine is so complex. Therefore, it is usually estimated experimentally. In this research, sound insertion loss of the enclosure is estimated by theory assuming that the sound field in the enclosure is reverberation field. And the results from the theory are compared to those from the experiment.

  • PDF

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

  • Kim, Hyun-Sil;Kim, Jae-Seung;Lee, Seong-Hyun;Seo, Yun-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.894-903
    • /
    • 2014
  • Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.

Experimental study for characteristics of diffuse sound field formed by sound source directivity (음원의 지향성이 확산음장 형성에 미치는 영향에 관한 실험연구)

  • Shin, Il-Seop;Cha, Kwang-Seok;Cho, Chang-Geun;Lee, Dae-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1002-1006
    • /
    • 2000
  • It is diffuse sound field that measuring condition of absorption ratio and sound transmission loss for material consist of building are measured in reverberartion room and on-site. In this study, for upkeeping diffuse sound field in reverberation room, it is measured and etimated that sound field is effected according to sound source lacation and characteristics of emission directivity for sound source.

  • PDF

Acoustic Radiation Characteristics from Flexible Steel Plate Excited by Acoustic Loading in an Rectangular enclosure (음향 가진된 밀폐계의 유연한 평판의 음향 방사 특성에 관한 연구)

  • 김상헌;안지훈;오재응
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.457-466
    • /
    • 1997
  • The experimental and analytical study was conducted to determine the noise transmission characteristics of acoustically loaded steel plate of rectangular enclosure and to investigate the sound radiation characteristics through out the enclosure. The vibrations of acoustically loaded plate give rise to sound radiations and generate the reverberant space that the sound field exists very close to a vibrating plate. Acoustic transmission loss is measured from the incident intensity into the plate and the transmitted intensity through out the plate. Sound radiation patterns are measured from both acoustic intensity technique and surface intensity technique. Those resultant patterns and vibrational modes are vital in understanding the relations between vibration and noise in the near field out of vibrating plate.

  • PDF

A study on the standard for determining airborne sound insulation performance of sound barrier panels (방음판의 음향투과손실 측정규격에 관한 연구)

  • Oh, Yang Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.302-311
    • /
    • 2022
  • Sound barrier walls are one of the most effective alternatives for reducing environmental noise on roads and railways in the city center. The insertion loss of the sound barrier against road traffic noise is the sum of the sound transmission loss, sound absorption loss, and sound energy reduction due to the diffraction attenuation of the sound barrier. The sound transmission loss of the sound barrier is one of the important factors that determine the insertion loss of the sound barrier and is a basic indicator that determines the performance of the sound barrier. Nevertheless, there is not a separate standard in Korea for measuring the acoustic transmission loss of sound barrier panels. There are only a few conditions in KS F 4770 series that stipulates on the general material of sound barrier panels. This thesis examines the necessity of the acoustic transmission loss measurement and evaluation standards of sound barrier walls, and seeks a measurement method in a free sound field (anechoic chamber) sound receiving room considering the characteristics of sound barrier walls installed in external spaces, unlike indoor building materials. In addition, a single number evaluation method using a reference spectrum was proposed so that the sound insulation effect according to various installation places such as roadside or railroad side can be easily displayed.