• Title/Summary/Keyword: Field simulation

Search Result 5,631, Processing Time 0.033 seconds

The Simulation of Electric Field Distribution for Globular Dielectric in the Atmosphere (대기중에서 구(球)형 유전체의 전계 분포 시뮬레이션)

  • 이동훈;박재윤;박홍재;고희석
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.305-309
    • /
    • 2003
  • This paper was shown the simulation of electric field distribution of globular dielectric for design of ideal packed-bed plasma reactor. When discharge gap between the electrodes and input voltage are each 20[mm]. 10000[V] in the atmosphere, the results of simulation to the electric field was measured stronger at globular dielectric of $\phi$5[mm] than 1$\phi$[mm] and 3.33$\phi$[mm]. And the maximum electric field or globular dielectric with $\phi$10[mm] was increased about 5[%] to maximum electric field of globular dielectric with $\phi$5[mm] in the atmosphere. when dielectric constant of globular dielectric is 100, it was simulated about 90[%] of maximum electric field of globular dielectric over 1000 dielectric constant. Ana the highest electric field appeared as globular electric was parallel structure with the other globular dielectric side by side of the globular dielectric and connected to electrodes.

Development of The New field Analysis System (차세대 전재해석 시스템의 개발)

  • 강종성;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.237-241
    • /
    • 1997
  • It is necessary to know the accurate field distribution around the high power apparatus, in designing it. To calculate the field around electrodes, we use the Charge Simulation Method(CSM) among several numerical methods and develop the new \"Field Analysis System\", by which we can draw the shape of electrodes, save the drawing in ascii code and apply CSM on the data. In the Field Analysis System, we try several rules for arrangement of simulation charge on CSM and consider their accuracy. At firs we simulate the case with simple electrode geometry and consider the adequacy of the rules. With tole field Analysis System applied the rules, we simulate the main electrode of load switchgear. As a result of the simulation, equipotential line, flux line and field strength on male electrode are drawn.

  • PDF

An Enhanced Floor Field based Pedestrian Simulation Model (개선된 Floor Field 기반 보행 시뮬레이션 모델)

  • Jun, Chul-Min
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.76-84
    • /
    • 2010
  • Many pedestrian simulation models for micro-scale spaces as building indoor areas have been proposed for the last decade and two models - social force model and floor field model - are getting attention. Among these, CA-based floor field model is viewed more favourable for computer simulations than computationally complex social force model. However, Kirchner's floor field model has limitations in capturing the differences in dynamic values of different agents and this study proposes an enhanced algorithm. This study improved the floor field model in order for an agent to be able to exclude the influences of its own dynamic values by changing the data structure, and, also modified the initial dynamic value problem in order to fit more realistic environment. In the simulations, real 3D building data stored in a spatial DBMS were used considering future integration with indoor localization sensors and real time applications.

Current overshoot operation of a REBCO magnet to mitigate SCF

  • Lee, Changhyung;Hahn, Seungyong;Bang, Jeseok;Cho, Jeonwook;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.65-69
    • /
    • 2018
  • Due to large in-field current carrying capacity and strong mechanical strength, a REBCO wire has been regarded as a viable high temperature superconductor (HTS) option for high field MRI and > 1 GHz (>23.5 T) NMR magnets. However, a REBCO magnet is well known to have an inherent problem of field inhomogeneity, so-called 'Screening Current induced magnetic Field (SCF)'. Recently, 'field shaking' and 'current overshoot operation' techniques have been successfully demonstrated to mitigate the SCF and enhance the field homogeneity by experiments. To investigate the effectiveness of current overshooting operation technique, a numerical simulation is conducted for a test REBCO magnet composed of a stack of double pancake coils using '2D edge-element magnetic field formulation' combined with 'domain homogenization' scheme. The simulation result demonstrates that an appropriate amount of current overshoot can negate the SCF. To verify the simulation results, current overshoot experiments are conducted for the REBCO magnet in liquid nitrogen. Experimental results also demonstrate the possible application of current overshoot technique to mitigate the SCF and enhance the field homogeneity.

A Study on Verification of PowerRail based on Voltage Drop under Extended Feeding Condition (연장급전 전압강하 계산을 위한 전기철도 급전 시뮬레이터의 검증에 관한 연구)

  • Kim, Joorak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.331-337
    • /
    • 2015
  • The power flow analysis of electrified railway is required complicated calculation, because of variable load. Train runs trough rail supplied by electric power therefore, the load value in electrified railway system fluctuates along time. The power flow algorithm in electrified railway system is different from general power system, and the power flow simulation is peformed by the particular simulation software. Powerail is simulation software for analysis of traction power supply system developed by KRRI, in 2008. This consists of load forecasting module, including TPS and time scheduling, and power flow module. This software was verified by measured current under normal feeding condition, however, has not been verified by voltage on the condition of extended feeding. This paper presents the verification of PowerRail based on voltage drop under extended feeding condition. This is performed by comparing simulation result with field test. Field test and simulation is done in commercial railway line.

EDISON_CHEM 솔버 기반 Multiscale Simulation의 가능성 제시 : 메탄의 Coarse-grained Force Field 구축과 열역학적 물성 연구

  • Jeong, Jin-Gwan
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.110-117
    • /
    • 2017
  • Multiscale Simulation은 sub-nano scale의 전자 구조에서부터 macro scale의 multibody system에 이르기까지 다양한 시간/공간 스케일을 관통하는 시뮬레이션 기법이다. 즉, 전자수준에서의 변화로 인한 분자 전체의 구조 변화와 그에 따른 기능의 변화를 알 수 있는 simulation 방법으로 다양한 스케일에서 분자의 정보를 얻을 수 있다는 점에서 최근 중요하게 여겨지는 시뮬레이션 방법 중 하나이다. 따라서 본 연구에서는 몇 가지의 EDISON_CHEM 솔버들을 조합하여 Multiscale Simulation의 가능성을 제시하고자 한다. 또한, 세부적으로 양자계산 시에 어떤 이론을 선택하여 계산하면 더 정확한지, basis set 선택 시 발생하는 basis set superposition error(BSSE)로 인한 분자 수준의 물성의 오차는 어느정도 인지 알아보고자 했다. 본 연구에서는 비교적 간단하지만 온실 가스이자 에너지원으로 각광받고 있는 메탄을 대상으로 하였다. 다양한 시공간 스케일을 다루는 에디슨 솔버들 중에 양자 수준의 계산을 할 수 있는 솔버로는 "GAMESS"를 이용했고, 이 결과를 통해 분자 수준의 물성을 알아보기 위한 솔버로는 "사용자 지정 역장을 사용한 일반 분자동력학(general_MD)"과 "두가지 서로 다른 종류의 LJ입자에 대한 분자동력 시뮬레이션 프로그램(sejong_lj))"을 이용했다. 메탄의 상 전이 과정에 대한 연구 결과 Hartree fock (HF) self-consistent theory를 통해 얻은 force field 보다는 Second-order Møller-Plesset (MP2) perturbation theory로 얻은 force field가 더 정확한 상 전이 온도를 예측한다는 것을 메탄의 coarse-grained simulation을 통해 알 수 있었다. 또한, MP2 이론으로 구한 force field에서 BSSE를 보정해주면 실험적으로 구한 메탄의 상 전이 온도와 더 근사한 값의 시뮬레이션 결과를 얻을 수 있었다. 이를 통해 전자 간의 상호작용을 더 정교하게 계산하는 MP2 이론으로 force field를 구해서 BSSE를 보정해주면 계산의 결과가 정확해진다는 것을 알 수 있었으며 이것이 EDISON_CHEM의 솔버들로 가능하다는 것을 제시하였다.

  • PDF

An Analytical Modeling and Simulation of Dual Material Double Gate Tunnel Field Effect Transistor for Low Power Applications

  • Arun Samuel, T.S.;Balamurugan, N.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.247-253
    • /
    • 2014
  • In this paper, a new two dimensional (2D) analytical modeling and simulation for a Dual Material Double Gate tunnel field effect transistor (DMDG TFET) is proposed. The Parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions and analytical expressions for surface potential and electric field are derived. This electric field distribution is further used to calculate the tunnelling generation rate and thus we numerically extract the tunnelling current. The results show a significant improvement in on-current characteristics while short channel effects are greatly reduced. Effectiveness of the proposed model has been confirmed by comparing the analytical results with the TCAD simulation results.

Numerical Simulation of the Flow Field inside a New 1 Ton/Day Entrained-Flow Gasifier in KIER

  • Li, Xiang-Yang;Choi, Young-Chan;Park, Tae-Jun
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.04a
    • /
    • pp.43-50
    • /
    • 2000
  • The flow field of a 1 Ton/Day entrained-flow gasifier constructed in KIER was numerical simulate in this paper. The standard $k-{\varepsilon}$ turbulence model and simple procedure was used with the Primitive-Variable methods during computation. In order to find the influence factors of the flow field which may have great effects on coal gasification process inside gasifier, difference geometry parameters at various operating conditions were studied by simulation methods. The calculation results show that the basic shape of the flow field is still parabolic even the oxygen gas is injected from the off-axis position. There exist an obvious external recirculation zone with a length less than 1.0m and a small internal recirculation region nears the inlet part. The flow field inside the new gasifier is nearly similar as that of the old 0.5T/D gasifier at same position if the design of burner remains unchanged.

  • PDF

Influences of Magnetic Field on Injection Time of Ferrite Slurry (자기장이 페라이트 슬러리의 주입시간에 미치는 영향)

  • Im, Jong-In;Yook, Young-Jin;Lee, Young-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.829-832
    • /
    • 2006
  • In this study, the influence of the magnetic field on ferrite slurry's injection time during the slurry forming process was investigated. The evaluation system of the slurry's injection time under the strong magnetic field was designed with FEM and manufactured. Studied parameters were the applied magnetic field, the input pressure of the slurry, and the supplying tube materials. As the results, the injection time was increased with the external magnetic field strength and rapidly decreased with increasing the input pressure of the slurry. Also the injection time was decreased when the supplying tube was manufactured with the magnetic material having the higher magnetic permeability than the ferrite.

Effects of the Capacitive Field in an Inductively Coupled Plasma Discharge

  • Choe, HeeHwan
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.114-117
    • /
    • 2017
  • Plasma characteristics of two-dimensional inductively coupled discharge simulation is investigated. Impedance of an inductively coupled plasma discharge was considered. Voltage drops across antenna coils and current variation between coils made different profiles of plasma characteristics. Importance of the capacitive field effect in some case was analyzed.