• Title/Summary/Keyword: Field performance

Search Result 9,436, Processing Time 0.034 seconds

Structural Performance of an Advanced Compsites Bridge Superstructure for Rapid Installation (급속시공용 복합신소재 교량상부구조의 구조 성능)

  • Ji, Hyo-Seon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.34-45
    • /
    • 2010
  • This paper describes the design, manufacturing process, testing, application, and assessment of capacity-ratings of the first all advanced composites bridge on a public highway system. In order to verify the bridge design prior to the field application, a sub-scale bridge superstructure was built and tested in the laboratory. The field load test results were compared with those of the finite element analysis for the verification of validity. To investigate its in-service performance, field load testing and visual inspections were conducted under an actual service environment. The paper includes the presentation and discussion for advanced composites bridge capacity rating based on the stress modification coefficients obtained from the test results. The test result indicates that the advanced composites bridge has no structural problems and is structurally performing well in-service as expected. Since these composite materials are new to bridge applications, reliable data is not available for their in-service performance. The results may provide a baseline data for future field advanced composites bridge capacity rating assessments and also serve as part of a long-term performance of advanced composites bridge.

  • PDF

Wind field generation for performance-based structural design of transmission lines in a mountainous area

  • Lou, Wenjuan;Bai, Hang;Huang, Mingfeng;Duan, Zhiyong;Bian, Rong
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.165-183
    • /
    • 2020
  • The first step of performance-based design for transmission lines is the determination of wind fields as well as wind loads, which are largely depending on local wind climate and the surrounding terrain. Wind fields in a mountainous area are very different with that in a flat terrain. This paper firstly investigated both mean and fluctuating wind characteristics of a typical mountainous wind field by wind tunnel tests and computational fluid dynamics (CFD). The speedup effects of mean wind and specific turbulence properties, i.e., turbulence intensity, power spectral density (PSD) and coherence function, are highlighted. Then a hybrid simulation framework for generating three dimensional (3D) wind velocity field in the mountainous area was proposed by combining the CFD and proper orthogonal decomposition (POD) method given the properties of the target turbulence field. Finally, a practical 220 kV transmission line was employed to demonstrate the effectiveness of the proposed wind field generation framework and its role in the performance-based design. It was found that the terrain-induce turbulence effects dominate the performance-based structural design of transmission lines running through the mountainous area.

Variations of the Sound Insulation Performance of the Windows for the Sound Source Angle in the Field Test (현장실험에서 음원의 입사각도에 따른 창의 차음성능 변화)

  • Kim, Sun-Woo;Kim, Ki-Yong;Lee, Ok-Kyun;Park, Hyeon-Ku;Song, Hyuk
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1180-1186
    • /
    • 1999
  • The aim of this study is to investigate the sound insulation performance of windows according to the sound source in the field test. For this purpose, an experiment was performed by KSF 2235(method for field measurements of sound insulation of windows and doors). Based on this code, the sound insulation performance fo the windows was measured for different incident angles of the sound and the effect of incident angle was obtained and discussed. Finally, it was found that the sound insulation performance of the windows was affected by the incident angle of sound source, and the sound insulation rating scale was different for the same window. The main factor changing insulation rating scale is considered to be the sound transmission through the carck of the folding part between the two pieces of wndows. Therefore, when evaluating the sound insulation performance of the windows for the field test, first of all the place of the sound source should be identified and generalized.

  • PDF

Performance Evaluation of Small-Scaled Wind Power Generator with Outer Permanent Magnet Rotor considering Electromagnetic Losses (1) - Magnetic Field Analysis and Electrical Parameters Derivation using Electromagnetic Transfer Relations Theorem - (전자기 손실을 고려한 소형 외전형 영구자석 풍력발전기의 성능 평가 (1) - 전자기 전달관계 기법을 이용한 자계특성해석 및 회로정수 도출 -)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2179-2189
    • /
    • 2010
  • This paper deals with analytical techniques for performance evaluation of small scaled wind power generator with outer permanent magnet rotor. In part (1), using transfer relations theorem, magnetic field distribution characteristics by PM and armature reaction field are derived. Moreover, electrical parameters such as back-EMF, inductance and resistance are calculated from the obtained field characteristic equations. The proposed analytical techniques are validated by nonlinear finite element method using commercial software 'Maxwell' and performance experiments of the manufactured generator. In part (2), generating characteristics analysis such as constant speed characteristics and constant resistive load characteristics, and performance evaluation according to variation of wind speed will be accomplished using the derived electrical parameters.

Development of Traction and Field Performance Model of Two-Wheel Tractor (보행용(步行用) 트랙터의 율인성능(率引性能) 모형(模型)과 분석(分析) 프로그램의 개발)

  • Rhee, Joong Yong;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.19-26
    • /
    • 1984
  • This study intended to develop the prediction models of the traction and field performance of two-wheel tractors by using the principles which were applied for predicting those of the four-wheel tractors. The traction model developed in this study consists of the net traction coefficient, rolling resistance coefficient and traction efficiency, Which are expressed as functions of both wheel numeric and slip. A computer program on the field performance of two-wheel tractors is also developed to predict the drawbar horsepower, traction force, traction efficiency, rotational speed of engine and engine horsepower if the characteristics of the engine performance and operational condition of the two-wheel tractor are known. Based on the developed models, the conditions of basic variables to maximize the field performance were analyzed so as to assess the existing two-wheel tractor.

  • PDF

A Study on the Ways of Securing the Effectiveness of Field Flame Retardant Coating Process (현장방염처리제도의 실효성 확보 방안에 관한 연구)

  • Park, Sung-Hyun;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.95-100
    • /
    • 2011
  • The ultimate purpose of this study is to improve the irrational system related to flame retardant coating performance test of field flame retardant coating articles and to secure the reliability of flame retardant coating through rational flame retardant coating test. To achieve this, the analysis was conducted on the interior finishing materials used in the interior fields and the trends of recent field flame retardant coating, based on the results of flame retardant coating performance test of field flame retardant coating articles which the first-line fire stations have recently conducted. And I attempted to present the methods of field flame retardant coating performance test suitable to current realities and the ways of improvement for securing reliability by analyzing the problems with the methods and procedures of field flame retardant coating articles and the registration system of flame retardant coating business.

Performance Assessment of Sputter-Coating-Colored BIPV Modules Through Field Test (현장 실험을 통한 Sputter Coating 컬러 BIPV 모듈의 발전성능 평가)

  • Lee, Hyo-Mun;Yoon, Jong-Ho;Kim, Hyun-Il;Lee, Gun-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.1-12
    • /
    • 2020
  • To assess the performance and characteristics of colored building-integrated photovoltaic (BIPV) modules, a comparative assessment of empirical performance was conducted on colored BIPV modules (gray, blue, and orange) and general BIPV module. These modules were installed on the south-facing slope (30°) for comparative assessment through a field test. Monitoring data were collected every 10 min from December 20, 2019 to January 21, 2020 and used to performance and characteristics analysis. Performance ratio and module efficiency were utilized during performance indexing for comparative assessment. For general BIPV modules, the operational efficiency was analyzed at 16.63%, whereas for colored BIPV modules, 13.70% (gray), 15.12 % (blue), and 14.49% (orange) were analyzed. It was discovered that the efficiency reduction caused by transmission losses owing to the application of colored cover glasses were 17.74% (gray), 9.05% (blue), and 9.86 % (orange), under field testing conditions. These values turned on an additional 7% reduction in efficiency for gray BIPV modules, compared to the degradation resulting from transmission drop (gray: 10.87%, blue: 8.99%, and orange: 9.02%) calculated using the efficiency of each module in standard test conditions (STC). Performance ratio analysis resulted in the following values: 0.92 for general BIPV modules, and 0.85 (gray), 0.91 (blue), and 0.91 (orange) for colored BIPV modules. As demonstrated by the above results, modules with a colored cover glass may differ in their operational performance depending on their color, unlike general modules. Therefore, in addition to the performance evaluation under STC, additional factors of degradation require consideration through field test.

Effects of curvature radius on vulnerability of curved bridges subjected to near and far-field strong ground motions

  • Naseri, Ali;Roshan, Alireza MirzaGoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.367-392
    • /
    • 2020
  • The specific characteristics of near-field earthquake records can lead to different dynamic responses of bridges compared to far-field records. However, the effect of near-field strong ground motion has often been neglected in the seismic performance assessment of the bridges. Furthermore, damage to horizontally curved multi-frame RC box-girder bridges in the past earthquakes has intensified the potential of seismic vulnerability of these structures due to their distinctive dynamic behavior. Based on the nonlinear time history analyses in OpenSEES, this article, assesses the effects of near-field versus far-field earthquakes on the seismic performance of horizontally curved multi-frame RC box-girder bridges by accounting the vertical component of the earthquake records. Analytical seismic fragility curves have been derived thru considering uncertainties in the earthquake records, material and geometric properties of bridges. The findings indicate that near-field effects reasonably increase the seismic vulnerability in this bridge sub-class. The results pave the way for future regional risk assessments regarding the importance of either including or excluding near-field effects on the seismic performance of horizontally curved bridges.

Research on Importance-Performance Analysis of Smart Construction Safety Management System (스마트 건설안전관리시스템의 중요도-성과도 분석 연구)

  • Jong-Yil Park;Chang-Hee Yun
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.2
    • /
    • pp.43-53
    • /
    • 2024
  • This study analyzes the importance-performance analysis (IPA) of the 10 dimensions of the smart construction safety management system, and analyzes which dimensions are important and which dimensions are performing to determine key improvement tasks, incremental improvement tasks, Maintenance and reinforcement tasks and continuous maintenance tasks were derived. Among the 10 dimensions of the smart construction safety management system, the dimensions that are recognized as important by all field managers and field workers and have high performance are the automatic risk displacement measurement system, smart environmental sensor system, and heavy equipment seizure prevention system. However, areas that were perceived as having high importance but low performance were worker location tracking systems, smart safety helmet chin muscles, and smart safety ring fastening. Among the smart construction safety management systems perceived by field managers, areas for key improvement with high importance and low performance included worker location tracking system and smart safety ring fastening. Among the smart construction safety management systems perceived by field workers, the area for key improvement with high importance and low performance was the automatic risk displacement measurement system.

Comparison between CFD Analysis and Experiments According to Various PEMFC Flow-field Designs

  • Lee, Kang-In;Lee, Se-Won;Park, Min-Soo;Cho, Yong-Hun;Cho, Yoon-Hwan;Chu, Chong-Nam;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 2009
  • Flow-field design has much influence over the performance of proton exchange membrane fuel cell (PEMFC) because it affects the pressure magnitude and distribution of the reactant gases. To obtain the pressure magnitude and distribution of reactant gases in five kinds of flow-field designs, computational fluid dynamics (CFD) analysis was performed. After the CFD analysis, a single cell test was carried out to obtain the performance values. As expected, the pressure differences due to different flow-field configurations were related to the PEMFC performance because the actual performance results showed the same tendency as the results of the CFD analysis. A large pressure drop resulted in high PEMFC performance. The single serpentine configuration gave the highest performance because of the high pressure difference magnitudes of the inlet/outlet. On the other hand, the parallel flow-field configuration gave the lowest performance because the pressure difference between inlet and outlet was the lowest.