• Title/Summary/Keyword: Field oriented control

Search Result 247, Processing Time 0.025 seconds

The High Performance Flux Weakening Control of Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 고성능 약계자 제어)

  • Lee, Jung-Ho;Kim, Jang-Mok;Won, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1051-1053
    • /
    • 1993
  • In this paper, the new flux weakening contol algorithm for the drive system of Interior Permanent Magnet Synchronous Motor(IPMSM) is proposed which includes the feedback of torque and current The torque error is used in order to control the current phase angle in the field weakening control. The proposed control method is compared with the stator flux oriented vector control method. Through the simulation the prominence of the proposed control method is verified.

  • PDF

The Design of an Auto Tunning PI Controller using Parameter Estimation Method for the Linear BLDC Motor (선형 추진 BLDC 모터에 대한 파라미터 추정기법을 이용하는 오토튜닝(Auto Tunning) PI 제어기설계)

  • Cha, Young-Beom;Song, Do-Ho;Kim, Jin-Ae;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.959-962
    • /
    • 2005
  • Servomotors are used as key components of automated system by performing accurate positioning, accurate speed regulation, and precise motion control in response to commands from computers and sensors. Especially linear brushless servomotors have numerous advantages over ball screws, timing belts, rack/pinion drives and friction drives compared with rotary servomotors. This paper proposes the estimation of unknown parameters from the linear brushless DC motor which is operated by sinusoidal commutation. The estimated parameters are used to tune the controller gain and disturbance observer. In order to agree with this purpose, Digital Signal Processor(TMS320F240), developed for implementation of a speed Field Oriented Control(FOC), adopted in this study. The processor playing an important role in controller has A/D converters, PWM generators, riched I/O port internally.

  • PDF

Speed Sensorless Stator Flux-Oriented Control of Induction Motor In the Field Weakening Region Using Luenberger Observer (약계자영역에서 루엔버기관측기를 이용한 유도전동기의 속도 센서리스 고정자자속 기준제어)

  • 권태성;신명호;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.375-380
    • /
    • 2003
  • In a conventional speed sensorless stator flux-oriented (SFO) induction motor drive, when the estimated speed is transformed into the sample-data model using the first-forward difference approximation, the sampled data model has a modeling error which, in turn, produces an error in the rotor speed estimation. The error is removed by the use of a low pass filter (LPF). As a result, the delay of the estimated speed occurs in transients by the use of the LPF. This paper proposes a method to estimate exactly the speed by using Luenberger observer to solve the problem of a conventional method.

Speed Sensorless Stator Flux-Oriented Control of Induction Motor in the Field Weakening Region Using Luenberger Observer (루엔버거 관측기를 이용한 약계자 영역에서 유도전동기의 속도 센서리스 고정자자속 기준제어)

  • Kuen Tae-Sung;Shin Myoung-Ho;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.3-6
    • /
    • 2002
  • In a conventional speed sensorless stator flux-oriented(SFO) induction motor drive system, when the estimated speed is transformed into the sample-data model using the first-forward difference approximation, the sampled data model has a modeling error which, in turn, produces an error in the rotor speed estimation. The error included in the estimated speed is removed by the use of a low pass filter (LPF). As the result, the delay of the estimated speed occurs in transients by the use of the LPF This paper investigates the problem of a conventional speed sensorless SFO system due to the delay of estimated speed in the filed weakening region. In addition, this paper proposes a method to estimate exactly speed by using Luenberger observer, The proposed method is verified by experiment with a 5-hp induction motor drive.

  • PDF

Optimal Efficiency Control for Induction Motor Drives

  • Kim Sang-uk;Choi Jin-ho;Kim Bo-youl;Kim Young-seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.428-433
    • /
    • 2001
  • This paper presents the control algorithm for maximum efficiency drives of an induction motor system with the high dynamic performance. This system uses a simple model of the induction motor that includes equations of iron losses. The model, which only requires the parameters of induction motor, is referred to a field-oriented frame. The minimum point of the input power can be obtained at the steady state condition. The reference torque and flux currents for the vector control of induction motors are calculated by the optimal efficiency control algorithm. The drive system with the proposed efficiency optimization controller has been implemented by a 32 bit floating point TMS320C32 DSP chip. The results show the effectiveness of the control strategy proposed for the induction motor drive.

  • PDF

A Study on the Sensorless Vector Control of IM using Adaptive Control (적응제어를 이용한 속도센서없는 유도전동기 벡터제어에 관한 연구)

  • Lee, Y.J.;Kim, H.J.;Oh, W.S.;Hong, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1196-1198
    • /
    • 1992
  • In field oriented control of Induction motors, speed sensor is required, which reduces the sturdiness of drive system and together with the expenditure of hardware for faultless transmission and processing of sensor signals it causes considerable expenses. These expensive sensors can be replaced by speed sensorless concept. And for good control, the knowledge of the rotor flux component of the rotor resistance are needs. Thus, this paper is based on a Extended Kalman Filter( EKF ) that estimates the state variables that are required for the control by only measuring the line voltages and currents of the machine. The rotor time constant and speed estimated by the EKF shows satisfactory agreement with the real values, with the simulation approaches.

  • PDF

Improvement of Linearized Characteristics for Induction Motor in the Transient State (과도상태에서 유도전동기의 선형화특성 개선에 관한 연구)

  • 윤병도;김민회;정재윤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.164-174
    • /
    • 1990
  • The improvement of linearized characteistics of induction motor control system with field oriented method is presented in this paper. A fully digitally controlled induction motor driver system based on the proposed linear control condition is described. The control system consists of IBM-PC/AT microcomputer, VSI PWM Inverter, and PI controller with softwave. By controlling the torque component, the rated flux component can be kept constant, even in the transient state. It is clearly confirmed by experiment that the improvement of the vector control condition is satisfactory. A simplified control model of an induction motor similar to the model for a separately excited DC motor drive system is obtained.

  • PDF

Vector Control Simulation of Single Sided Linear Induction Motor (편측형 선형유도전동기의 벡터제어에 관한 연구)

  • Jeong, Byeong-Ho;Lee, Gang-Yeon;Cho, Geum-Bae;Baek, Hyeong-Lae;Choi, Chang-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.127-131
    • /
    • 2003
  • LIM have mainly different point considering rotary induction motor, that is end effect. In this paper described that, end effect, adding to the rotary induction motor. They can designed because of affects magnetizing inductance and series resistance in the d-axis circuit. After LIM modeling, using SVPWM, apply to vector control this model. We can verify feasibility of field oriented control technology can control speed by simulation.

  • PDF

Parameters Estimation of Five-phase Squirrel-Cage Induction Motor (5상 농형 유도전동기의 정수 추정)

  • Kim, Min-Huei
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.199-205
    • /
    • 2012
  • This paper propose a improved parameter estimations of five-phase squirrel-cage induction motor(IM) for speed control system on field oriented control(FOC). In order to high performance control of ac the motors using a FOC and DTC(direct torque control) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, rotor position and speed estimation, and so on. We are suggest a estimation method of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental. There are results of stator winding test, no-load test, locked rotor test, and obtained equivalent circuits using manufactured experimental apparatus. For presenting the superior performance of the speed control system in adapted the parameters, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[KW] IM.

Design of an Adaptive Backstepping Speed Controller for Induction Motors with Uncertainties using Neural Networks (신경회로망을 이용한 불확실성을 갖는 유도전동기의 적응 백스테핑 속도제어기 설계)

  • Lee, Eun-Wook;Chung, Kee-Chull;Lee, Seung-Hak
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.476-482
    • /
    • 2006
  • Based on a field-oriented model of induction motor, an adaptive backstepping control approach using neural networks is proposed in this paper for the speed control of induction motors with uncertainties at a minimum of information. Neural networks are used to approximate most of uncertainties which are derived from unknown motor parameters, load torque disturbances and unknown nonlinearities and an adaptive backstepping controller is used to derive adaptive law of neural networks and control input directly. The controller is implemented by the hardware using DSP and the effectiveness of the proposed approach is verified by carrying out the experiment.