• Title/Summary/Keyword: Field mapping

Search Result 716, Processing Time 0.03 seconds

Conformal Mapping for Cogging Torque computation in IPM motor (등각 사상법을 이용한 매입형 영구자석 전동기의 코깅토크 해석)

  • Fang, Liang;Kwon, Soon-O;Jung, Jae-Woo;Hong, Jung-Pyo;Ha, Kyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1204-1206
    • /
    • 2005
  • This paper deals with magnetic field analysis and computation of cogging torque in IPM motor with an analytical method, which is based on the Conformal Mapping technique. The magnetic field is analyzed by solving space harmonic field analysis due to inserted PM magnetizing distribution. Conformal Mapping method is then used for considering the slot opening effect and rotor saliency effect on the air-gap field magnetic distribution. Then, by integrating the field over the stator surface, cogging torque is calculated. The validity of the proposed analytical method is confirmed by comparing the results with 2-D FEA results.

  • PDF

Gaussian process approach for dose mapping in radiation fields

  • Khuwaileh, Bassam A.;Metwally, Walid A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1807-1816
    • /
    • 2020
  • In this work, a Gaussian Process (Kriging) approach is proposed to provide efficient dose mapping for complex radiation fields using limited number of responses. Given a few response measurements (or simulation data points), the proposed approach can help the analyst in completing a map of the radiation dose field with a 95% confidence interval, efficiently. Two case studies are used to validate the proposed approach. The First case study is based on experimental dose measurements to build the dose map in a radiation field induced by a D-D neutron generator. The second, is a simulation case study where the proposed approach is used to mimic Monte Carlo dose predictions in the radiation field using a limited number of MCNP simulations. Given the low computational cost of constructing Gaussian Process (GP) models, results indicate that the GP model can reasonably map the dose in the radiation field given a limited number of data measurements. Both case studies are performed on the nuclear engineering radiation laboratories at the University of Sharjah.

Analysis of Electrostatic Field and Potential Distributions in Conductor-Backed Coupled Coplanar Waveguide Using Conformal Mapping Method (등각사상방법을 이용한 도체로 보강된 결합 도파 선로의 정전기장과 전위 분포 해석)

  • Yoo, Tae-Hoon;Han, Ki-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.35-42
    • /
    • 2010
  • We use conformal mapping method to derive the analytical expressions for calculating electrostatic fields and electric potentials surrounding the conductor-backed coupled coplanar waveguide(CBCCPW) structure. Using the derived expressions, the electrostatic fields and potentials are computed at various points of the CBCCPW's geometry and the field and potential distributions are analyzed. The proposed method provides a faster and simpler calculation of the field distributions than the full-wave analysis method because no iterations are required. This method can be widely applied to the analysis of microwave integrated circuits using coupled line, such as coupler, filter, and microstrip antenna.

The use of digital imaging and laser scanning technologies in rock engineering

  • Kemeny John;Monte Jamie;Handy Jeff;Thiam Samba
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.35-41
    • /
    • 2003
  • Rock mass characterization is an integral part of rock engineering design. Much of the information for rock mass characterization comes from field fracture mapping and data collecting. This paper describes two technologies that can be used to assist with the field mapping and data collecting activities associated with rock mass characterization: digital image processing and 3D laserscanning. The basis for these techniques is described, as well as the results of field case studies and an analysis of the error in estimating fracture orientation.

  • PDF

Generating Motion- and Distortion-Free Local Field Map Using 3D Ultrashort TE MRI: Comparison with T2* Mapping

  • Jeong, Kyle;Thapa, Bijaya;Han, Bong-Soo;Kim, Daehong;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.4
    • /
    • pp.328-340
    • /
    • 2019
  • Purpose: To generate phase images with free of motion-induced artifact and susceptibility-induced distortion using 3D radial ultrashort TE (UTE) MRI. Materials and Methods: The field map was theoretically derived by solving Laplace's equation with appropriate boundary conditions, and used to simulate the image distortion in conventional spin-warp MRI. Manufacturer's 3D radial imaging sequence was modified to acquire maximum number of radial spokes in a given time, by removing the spoiler gradient and sampling during both rampup and rampdown gradient. Spoke direction randomly jumps so that a readout gradient acts as a spoiling gradient for the previous spoke. The custom raw data was reconstructed using a homemade image reconstruction software, which is programmed using Python language. The method was applied to a phantom and in-vivo human brain and abdomen. The performance of UTE was compared with 3D GRE for phase mapping. Local phase mapping was compared with T2* mapping using UTE. Results: The phase map using UTE mimics true field-map, which was theoretically calculated, while that using 3D GRE revealed both motion-induced artifact and geometric distortion. Motion-free imaging is particularly crucial for application of phase mapping for abdomen MRI, which typically requires multiple breathold acquisitions. The air pockets, which are caught within the digestive pathway, induce spatially varying and large background field. T2* map, that was calculated using UTE data, suffers from non-uniform T2* value due to this background field, while does not appear in the local phase map of UTE data. Conclusion: Phase map generated using UTE mimicked the true field map even when non-zero susceptibility objects were present. Phase map generated by 3D GRE did not accurately mimic the true field map when non-zero susceptibility objects were present due to the significant field distortion as theoretically calculated. Nonetheless, UTE allows for phase maps to be free of susceptibility-induced distortion without the use of any post-processing protocols.

Restriction Fragment Fingerprint of an Alkaliphilic Micrococcus sp. Y-1 Genome by Pulsed-field Gel Electrophoresis

  • Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 1995
  • A genomic DNA of alkaliphilic bacterium, Micrococcus sp. Y-l, was analysed using the physical mapping method of pulsed-field gel electrophoresis (PFGE). Five restriction enzymes of Sspl, Hpal, Xbal, Ndel or EcoRI, which recognize the Adenine-Thymine-rich sequences of genomic DNA, were used for the generation of few (7 to 20) distinctly separate fragments, with average sizes in the range of 200~500 kb. However, the sites for Notl and SfiI, 8 base-recognizing enzymes, were highly frequent. The genome size of this strain was determined to be 4 mega base pairs (Mb) from restriction fragments separated by PFGE. This is the first case of restriction mapping in alkaliphilic bacterium.

  • PDF

Development of Mobile System Based on Android for Tunnel Face Mapping (터널 막장 매핑을 위한 안드로이드 기반의 모바일 시스템 개발)

  • Park, Sung Wook;Kim, Hong Gyun;Bae, Sang Woo;Kim, Chang Yong;Yoo, Wan Kyu;Lee, Jin Duk
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.343-351
    • /
    • 2014
  • Tunnel face mapping plays an important role in risk analysis and infrastructure support decisions during tunnel construction. In this study, a digital mapping system using a mobile device is employed instead of existing face-mapping methods that rely upon face mapping sheets. The mobile device is then connected to the main server in the field, where a tunnel-specific database is compiled automatically. This information provides real-time feedback on the tunnel face to construction personnel and engineers, thus allowing for rapid assessment of tunnel face stability and infrastructure needs. The Douglas-Peucker algorithm, among others, is employed to resolve problems arising from the detailed mapping and speed problem by data accumulation. This system is expected to raise program optimization through field verification and additional functional improvements.

A Load Balancing Technique Combined with Mean-Field Annealing and Genetic Algorithms (평균장 어닐링과 유전자 알고리즘을 결합한 부하균형기법)

  • Hong Chul-Eui;Park Kyeong-Mo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.8
    • /
    • pp.486-494
    • /
    • 2006
  • In this paper, we introduce a new solution for the load balancing problem, an important issue in parallel processing. Our heuristic load balancing technique called MGA effectively combines the benefit of both mean-field annealing (MFA) and genetic algorithms (GA). We compare the proposed MGA algorithm with other mapping algorithms (MFA, GA-l, and GA-2). A multiprocessor mapping algorithm simulation has been developed to measure performance improvement ratio of these algorithms. Our experimental results show that our new technique, the composition of heuristic mapping methods improves performance over the conventional ones, in terms of solution quality with a longer run time.

Image Fusion and Evaluation by using Mapping Satellite-1 Data

  • Huang, He;Hu, Yafei;Feng, Yi;Zhang, Meng;Song, DongSeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.593-599
    • /
    • 2013
  • China's Mapping Satellite-1, developed by the China Aerospace Science and Technology Corporation (CASC), was launched in three years ago. The data from Mapping Satellite-1 are able to use for efficient surveying and geometric mapping application field. In this paper, we fuse the panchromatic and multispectral images of Changchun area, which are obtained from the Mapping Satellite-1, the one that is the Chinese first transmission-type three-dimensional mapping satellite. The four traditional image fusion methods, which are HPF, Mod.IHS, Panshar and wavelet transform, were used to approach for effectively fusing Mapping Satellite-1 remote sensing data. Subsequently we assess the results with some commonly used methods, which are known a subjective qualitative evaluation and quantitative statistical analysis approach. Consequently, we found that the wavelet transform remote sensing image fusion is the optimal in the degree of distortion, the ability of performance of details and image information availability among four methods. To further understand the optimal methods to fuse Mapping Satellite-1 images, an additional study is necessary.

Improved Algorithm of Sectional Tone Mapping for HDR Images (HDR 이미지를 위한 단면 톤 매핑 개선 알고리즘 구현)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.137-140
    • /
    • 2021
  • High dynamic range (HDR) technology has been drawing attention in the field of imaging and consumer entertainment. As tools for capturing and creating HDR contents, encoding, and transmission evolve to support HDR formats, various display capabilities are being developed and increased. Hence, there is need for remapping native HDR imagery for display on lower quality legacy standard dynamic range (SDR) displays. This operation is referred to as tone mapping. In this paper, we present a sectional tone mapping method by Lenzen, and expand upon a tone mapping approach to improve temporal stability while maintaining picture quality. Compared to the existing block-based sectional tone mapping, our method uses the edge awareness-based tone mapping. We estimate the performance of the objective metric on temporal flickering. The experimental result shows that the algorithm maintains a smoother relationship between the output luminance values, and this reveals success in reducing halos and improving temporal stability with adopted edge aware filtering.