• Title/Summary/Keyword: Field installation test

Search Result 276, Processing Time 0.027 seconds

A Applicability Study on Single Grouted Column Method (C-RJP Grouting) for Buoyancy-Resistant Permanent Anchor in Highly Permeable Volcanic Clastic Zones (투수성이 높은 화산쇄설층에서 부력앵커 시공을 위한 단일공 차수공법 (C-RJP Grouting)의 적용성에 관한 연구)

  • Jung, Yonggun;Chae, Youngsu;Park, Byunghee;Kim, Jeongryeol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.5-12
    • /
    • 2015
  • In this study, buoyancy-resistance permanent anchor was considered to prevent uplift pressure of a building structure. However, this test was failed to put anchor body in the boring hole because of the rapid outflow of ground water and coefficient of permeability. In addition, the hole where the anchor body was forcefully inserted constantly flew the sea water and cement. And it was found that anchor was not settled in the ground. In order to solve this problem, jet grouting method was applied to block the ground water and the single grouted column method was chosen to install the buoyancy-resistance permanent anchor. In this paper, the single grouted column method was applied with the general jet grouting methods and grout material was fixed by 3-field tests. These tests confirmed the effect of permeability and ground improvement with field permeability test by core sampling, Standard Penetration Test (SPT) and unconfined compression test. Confirming the stability of the buoyancy-resistance permanent anchor with installation and tension test, application of the single grouted column method in the volcanic clastic zones was verified.

Backfill Materials for Underground Facility with Recycling Materials - Small-Scaled Laboratory Chamber Test and FEM Analysis (재활용재료를 이용한 지하매설물용 뒤채움재 - 모형챔버실험 및 유한요소해석)

  • Lee, Kwan-Ho;Lee, Kyung-Jung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.97-103
    • /
    • 2011
  • In this research, a small-scaled laboratory test and FEM analysis have been carried out to evaluate the feasibility of field construction with couple of recycled materials, such as in-situ soil, water-treatment sludge, and crumb rubbers. A static loading, which simulates the real traffic load, was adopted in lab test. The test was carried out, according to simulated field construction stages, such as excavation, bedding materials and pipe installation, placing and curing of controlled low strength materials, and simulated traffic loading. Couple of measuring instruments were adopted. The maximum vertical and horizontal deformations were 0.83% and 1.09%, during placing the CLSM. The measured vertical and horizontal deformations with curing time were 0.603mm and 0.676mm, respectively. The reduction effect of vertical and lateral earth pressure was relatively big. Also, FEM analysis was carried out to get the deformation, earth pressure and strain of PVC with different Controlled Low Strength Materials(CLSM) materials.

Installation Technology and Behavior of Silty Clay Filled Geotextile Tube (실트질 점토 채움 시 지오텍스타일 튜브의 거동 및 시공 방법에 관한 연구)

  • Shin, Eun-Chul;Oh, Young-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(detached breakwater, groins and jetty). The geotextile tubes are made of sewn geosynthetics sheets. If the sandy soil is use to fill material, these inlets should be spaced closely to assure uniform filling of the tubes because sandy soil and geosynthetic is very pervious. However, the clayey soil or contaminated slurry is used, the inlets can be located relatively long distance. The fine clayey particles tend to rapidly blind the fabric slowing down water escape through the geotextile. This paper presents a field test result of a geotextile tube in the land reclamation project for the Songdo New City construction site. The dredged silty clay was dredged by the dredging ship and hydraulically pumped into the geotextile tube. The height of geotextile tube was measured at every filling stage and also measured width and diameter of geotextile tube with the elapsed time. Based on the test results, if the clayey filling material is used, the pumping step must be divided 3~4 stages for drainage and sediment. After complete drainage, the height of the geotextile tube reduces by approximately 50%.

  • PDF

Study on Affecting Factors for the Segmental Joint Behavior of Spliced Girder Bridges (분절교량 접합부 거동의 영향인자에 대한 연구)

  • Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.9-16
    • /
    • 2019
  • Recently, precast PSC girder bridges have been widely applied for short and middle span bridges. The construction of the spliced girder bridges has been increasing to overcome the length limit of girder and transportation restrictions. In case of the spliced girder, the integrity of the segmental joints is very important to secure the structural soundness of bridge because the discontinuity on the segmental joints between adjacent segments could be vulnerable point. The study of segmental joint behavior with different influence factors of joint type, shear key installation, confining force is very important. In this research, finite element analysis and scaled model test with different shear key shapes and confining forces were carried out and the comparative study was performed to evaluate the segmental joint behavior of precast spliced PSC girder bridge. It was confirmed that the installation of shear key with height and depth ratio of 1/2~1/3 and applying of confining force of 1/2 of the concrete strength at the joint was effective in improving the integrity of segmental joint. In addition, the field loading test for existed precast spliced PSC girder bridge was performed and the measurement of the difference of deflection between adjacent segments at segmental joint was proposed as the assessment solution of the integrity of segmental joint.

The Effects of the Breadth of Foundation and Rock Layer on the Installation Method of Micro-piles (기초 폭 및 암반층의 영향을 고려한 마이크로파일 설치방안에 관한 연구)

  • Hwang, Tae-Hyun;Kim, Ji-Ho;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.29-38
    • /
    • 2010
  • Micro-piles have been used to increase the bearing capacity or to restrain settlement of existing shallow foundation. Recently, micro-piles are used to support the shallow foundation, to stabilize the slope and to resist the sliding of retaining wall. Using the micro-piles in geotechnical engineering, some investigators have studied the effective installing method by model test or field test. But most of previous studies are chiefly focused on the micro-piles in sand or clay layer. If a rock layer exists in soil, the installing length of micro-piles may be determined by the depth of rock layer. In this case, the stiffness of pile may be changed by the installing length of pile, and so the installing method has to be altered by the changed stiffness of pile. Model tests have been conducted to study the installation method of micro-pile in soil with rock layer. As a result, when the ratio of length of pile is below 50 ($L/d{\leq}50$), installing of micro-piles in vertical position is effective regardless of the depth of rock layer. If the depth of rock layer is deeper than soil failure zone and the ratio of the length of pile exceeds 50 (L/d>50), installing of the micro-piles in sloped position is effective.

Development of a Shut-off Device of LP Gas Regulator for Home Use (가정용 LP가스 조정기 차단안전장치의 개발)

  • Kim Young-Gyu;Kim Pil-Jong;Kwon Boo-Kil;Park Gyo-Shik;Kim Ji-Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.54-59
    • /
    • 2006
  • A safety device with shut-off function was developed for preventing intentional accidents that might happen by separating of cutting hoses connected to pressure regulators used in residential LP gas facility. For the verification of function and field adaptability, the safety device with shut-off function was tested in the state of joining the device to the regulator and a field test was carried out at home. This study shows that, at the inlet pressure of 0.07-1.56 MPa, the device shuts off the gas within the 5m length of hose regardless of the installation condition of the regulator. The shut-off flow rate increases in the order of perpendicular upward, horizontal and perpendicular downward. From the results of the field tests carried out at home for 5 months, there appears no problem using a gas range or a boiler. If the developed shut-off device is commercialized and distributed in the market the intentional accidents occurred by cutting or separating hoses can be prevented remarkably.

  • PDF

Field Test for Absorption Energy and Displacement of Rockfall Protection Net (낙석방지울타리 망의 변위량 및 성능검증을 위한 실물낙석시험)

  • Seo, JinHyuk;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.12
    • /
    • pp.17-21
    • /
    • 2020
  • Over 60% of South Korea's land consists of mountainous topography, and recently, due to earthquakes, localized heavy rains and road development, the risks of rockfalls are getting higher. As of now, rockfall prevention facilities are being constructed in 70% of Korean roads cut slope and rockfall protections account for about 20% of them. Rockfall protection's supporting capacity is defined by combining performance of wire mesh, pillars and wire ropes. For the existing constructed rockfall protection, standards of pillars that can absorb 48~61 kJ amount of energy, wire ropes and wire mesh are presented in Guidelines for the installation and management of traffic safety facilities, Rockfall prevention facilities by Ministry of Land, Transport and Maritime Affairs (2008). However, each factor's correlation of absorption energy is not presented so it is uncertain. This study will conduct vertical drop test and identify adequacy of rockfall protection net of displacement quantity calculation factor which is delta and evaluate rockfall protection net's absorbable energy through standards of overseas performance evaluation criteria.

Development of hybrid artificial reef and basic structural performance tests (복합형 인공어초의 개발 및 구조 성능 평가)

  • Ko, Hune-Bum;Kim, Hee-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.341-347
    • /
    • 2018
  • The purpose of this study is to develop a new type of hybrid artificial reef that can solve the problems of construction, installation and operation of existing concrete type and steel type artificial reef, and to evaluate basic structural performance through static loading test. For this purpose, we evaluated the strengths and weaknesses of concrete type and steel type artificial reef in literature, and developed a new type of hybrid artificial reef which can effectively overcome the problems of each artificial reefs while maintaining the advantages of two artificial reefs as an alternative respectively. In order to evaluate the merits of the proposed hybrid artificial reef, it was confirmed that the possibility of securing the convenience of the proposed hybrid artificial reef in the field and the possibility of securing the desired advantages were confirmed. Also, the static loading test was performed to evaluate the basic structural performance of the artificial reef. Through the above study, it was confirmed that the developed hybrid artificial reef exhibited proper structural performance while securing easiness of making and assemble.mm) can be predicted to have a low value up to 60% of the strength of cylinders without reinforcement.

An Experimental Study of Diminution of Ballast Track Bridges Vibration due to the Variation of Ballast Depth (도상두께 변화에 따른 유도상교량 궤도 진동저감의 실험적 연구)

  • Kwon, Soon-Jung;Lee, Sang-Bae;Hong, Cheng-Hi
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1222-1229
    • /
    • 2011
  • Railway bridges are divided into ballastless and ballast track bridges. The ballast abrasion occurs on the ballast track upon bridges more than soil roadbed because the track vibration occurs a lot in the ballast track upon bridges due to girder vibration when a train's weight is loaded onto track even though the identical ballast is used. The phenomena of mud pumping especially, which occurs when drainage is not properly secured for heavy rain, leads to the increase of maintenance work load and the decline of ride comfort. There are countermeasures such as ballast change, installation of cross-drainage for poor drainage, gutter establishment, ballast lifting methods, ballast mats and resilient sleepers laying for the mud pumping. The ballast thickness range in domestic railroad construction rule is uniformly set up according to the design speed of railroad and passing tonnage of train without considering field conditions which is considered in foreign railroad companies. The purpose of this study is to verify the effect of vibration decrease by measuring the acceleration, displacement and ride comfort of ballast track with the change of ballast thickness on the ballast track bridges and to suggest the optimal height of ballast on the Yocheon Bridge built for the test in Honam Line.

  • PDF

Numerical simulation of set-up around shaft of XCC pile in clay

  • Liu, Fei;Yi, Jiangtao;Cheng, Po;Yao, Kai
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.489-501
    • /
    • 2020
  • This paper conducts a complicated coupled effective stress analysis of X-section-in-place concrete (XCC) pile installation and consolidation processes using the dual-stage Eulerian-Lagrangian (DSEL) technique incorporating the modified Cam-clay model. The numerical model is verified by centrifuge data and field test results. The main objective of this study is to investigate the shape effect of XCC pile cross-section on radial total stress, excess pore pressure and time-dependent strength. The discrepancies of the penetration mechanism and set-up effects on pile shaft resistance between the XCC pile and circular pile are discussed. Particular attention is placed on the time-dependent strength around the XCC pile shaft. The results show that soil strength improved more significantly close to the flat side compared with the concave side. Additionally, the computed ultimate shaft resistance of XCC pile incorporating set-up effects is 1.45 times that of the circular pile. The present findings are likely helpful in facilitating the incorporation of set-up effects into XCC pile design practices.