• Title/Summary/Keyword: Field analysis

Search Result 21,963, Processing Time 0.041 seconds

Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

  • Kim, J.H.;Park, S.I.;Im, S.H.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.13-19
    • /
    • 2013
  • Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

2-D Field Analysis of Flat-type Motor (평판형 전동기의 2차원 자계 해석에 관한 연구)

  • Kim, Pill-Soo
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.160-165
    • /
    • 1998
  • This paper describes a method for field analysis inside the flat-type brushless DC motor using 2-D field simulator. Rigorous field analysis entail 3-D analysis. However, this analysis is not often appropriate for system designs because of the time and cost involved. For field analysis in this study, the 3-D problem is reduced to a 2-D boundary value problem by introducing a cylindrical cutting plane at the mean radius of the magnets. Independent of sizes and shapes of systems, the exact 2-D field results can be obtained with reasonable predictability.

  • PDF

Magnetic Field Analysis of the Field Coil for 10 MW Class Superconducting Wind Turbines (10 MW급 초전도 풍력발전기 계자코일 전자장 해석)

  • Kim, Ji-Hyung;Park, Sa-Il;Kim, Ho-Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.18-22
    • /
    • 2012
  • This paper presents the magnetic field analysis of the racetrack double pancake field coil for the 10 MW class superconducting wind turbine which is considered to be the next generation of wind turbines using the 3 Dimensional FEM(Finite Elements Method). Generally, the racetrack-shaped field coil which is wound by the second generation(2G) superconducting wire in the longer axial direction is used, because the racetrack-shaped field coil generates the higher magnetic field density at the minimum size and reduces the synchronous reactance. To analysis the performance of the wind turbines, It is important to calculate the distribution of magnetic flux density at the straight parts and both end sections of the racetrack-shaped high temperature superconductivity(HTS) field coil. In addition, Lorentz force acting on the superconducting wire is calculated by the analysis of the magnetic field and it is important that through this way Lorentz force can be used as a parameter in the mechanical analysis which analyzes the mechanical stress on the racetrack-shaped field coil.

Short Circuit Electromagnetic Force Prediction by Coupled Electromagnetic-Mechanical Field Analysis of Dry-Type Transformer (전자계-기계계 결합해석에 의한 건식변압기의 단락강도 예측)

  • Ahn, Hyun-Mo;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.301-308
    • /
    • 2011
  • This paper deals with the coupled electromagnetic-mechanical field analysis for short-circuit electromagnetic force of the dry-type transformer. The short-circuit currents are calculated using external circuit in accordance with short-circuit test equipment. According to short-circuit current, the generated magnetic leakage flux density in dry-type transformer model is calculated by finite element method. The radially-directed electromagnetic forces in windings are calculated using electromagnetic field analysis and then axially-directed electromagnetic forces in windings are calculated using electromagnetic-mechanical field analysis. The calculated axially-directed electromagnetic forces in high voltage winding are compared to those of measured ones and showed good agreement with experimental results.

Magnetic field characteristics from HTS quadruple magnet of in-flight separator for a heavy ion accelerator

  • Zhang, Zhan;Lee, Sangjin;Jo, Hyun Chul;Kim, Do Gyun;Kim, Jongwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.23-27
    • /
    • 2015
  • Quadruple magnet is an essential component for the accelerator, and the field uniformity in the good field region reflects the quality of quadruple magnet. In this paper, the total magnetic field B was separated into the coil-induced magnetic field $B_s$ and the iron-induced magnetic field $B_c$ to explain why the total magnetic field B has some inhomogeneity. Using Fourier analysis, harmonic components of $B_s$, $B_c$ and B have been analyzed at good field region, respectively. The harmonics of multipole magnet and Fourier analysis are helpful to show the uniformity of magnetic field. Several geometries of yoke and coils were defined to analyze the effect on field uniformity of an HTS quadruple magnet. By the analysis, it was found that the sixth harmonics which is the main factor of field inhomogeneity can be reduced to zero. It means that the sixth harmonics of the magnetic field B can be removed by adjusting the geometry of the magnet pole and the position of coils. We expect that this result can effectively improve the uniformity of an HTS quadruple magnet.

Dynamic Analysis of Existing Rockfill Dam Using Dynamic Properties by Field Test and Geophysical Exploration (실측 동적물성을 이용한 기존 사력댐의 동적거동분석)

  • Lee, Jong-Wook;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.306-313
    • /
    • 2005
  • For seismic response analysis of rockfill dam, dynamic material properties, by field test, are needed. Density and elastic wave profiles have to be known to get an information of the material properties of structure. In this study, various field tests are applied to the example of rockfill dam to get an information of dynamic material properties and seismic safety is evaluated by seismic response analysis with the result of field tests.

  • PDF

A Study on Material Characterization of Semi-Solid Materials (I) -Proposal of New Velocity Field for Upper Bound Analysis of Backward Extrusion- (반용융 재료의 물성치 평가에 관한 연구(I) -후방압출의 상계해석을 위한 동적 가용 속도장의 제안-)

  • 이주영;김낙수
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.364-373
    • /
    • 1999
  • For material characterization of semi-solid materials, backward extrusion process, which has been used in forming of hollow-sectioned products, was analyzed by the upper bound analysis in the current study. The existing kinematically admissible velocity field was applied to steady state at which there was no change in the assumed regions of velocity field. For unsteady state, new velocity field, as a function of dead zone angle, was proposed. Through the whole analysis, fiction between die and workpiece was also considered. It has been studied how the process variables, such as friction factor and punch velocity, and material parameters, such as strength coefficient, strain rate sensitivity could affect on analysis results. Finally, by the comparison with the finite element analysis, the reliability and efficiency of the proposed velocity field were discussed.

  • PDF

Study on Analysis Method for Ship's Ferromagnetic Signature using Magnetic Mock-up Model (축소 모델을 이용한 함정 자기장 신호 해석 기법 연구)

  • Yang, Chang-Seob;Chung, Hyun-Ju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.38-51
    • /
    • 2007
  • This paper describes research results for the measurement and analysis method of magnetic signatures generated from the ship's magnetic mock-up model. In this paper, we present the theoretical and experimental techniques for the separation of the permanent and the induced magnetic field from the measured magnetic signature of the mock-up model. Also, we describe the prediction method of the induced magnetic field generated from mock-up model using the Magnet s/w, one of the FEM analysis tools for the electro-magnetic field and the magnetic dipole modelling method based on the least square techniques. The proposed modelling and analysis methods can be used for the prediction and the analysis of the static magnetic field generated from the real naval ship as well as the mock-up model.

Time-domain measurement and spectral analysis of low frequency magnetic field on board of rolling stock (전기철도 차량에 대한 극저주파 자계영역의 시간영역 측정 및 스펙트럼 분석)

  • Jang, Dong-Uk;Chung, Sang-Gi
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.263-268
    • /
    • 2008
  • The measurement of magnetic field is performed AC magnetic field emission density in driver cab and saloon's compartment of rolling stock. In order to measure magnetic-field emission, a three-axial magnetic-field sensor is used and connected to data process system. The AC magnetic field is checked and analysis through BNC output, DAQ cad and notebook PC. The spectral analysis is performed by short time Fourier transform(STFT) for time-domain emission signal.

  • PDF

GSMAC-FEM Analysis of Single-Crystal Growth by CUSP MCZ Method

  • Jung, Chung-Hyo;Takahiko Tanahashi;Yuji Ogawa
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1876-1881
    • /
    • 2001
  • We present the numerical analysis of the growth of a silicon (Si) single crystal. In the MCZ (Magnetic-field-applied Czochralski) method, two magnetic fields that stand opposite to each other generate a cusp magnetic field. In this work, the three cusp magnetic fields used for the analysis are an extern magnetic field, a surface magnetic field and an internal magnetic field. Each case was evaluated mainly as to the degree of stirring, shaft symmetry and the stability of the flow. As a result, the cusp magnetic field that yielded to best conditions was the internal magneic field.

  • PDF