• Title/Summary/Keyword: Field Robot

Search Result 699, Processing Time 0.042 seconds

Collison-Free Trajectory Planning for SCARA robot (스카라 로봇을 위한 충돌 회피 경로 계획)

  • Kim, T.H.;Park, M.S.;Song, S.Y.;Hong, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2360-2362
    • /
    • 1998
  • This paper presents a new collison-free trajectory problem for SCARA robot manipulator. we use artificial potential field for collison detection and avoidance. The potential function is typically defined as the sum of attractive potential pulling the robot toward the goal configuration and a repulsive potential pushing the robot away from the obstacles. In here, end-effector of manipulator is represented as a particle in configuration space and moving obstacles is simply represented, too. we consider not fixed obstacle but moving obstacle in random. So, we propose new distance function of artificial potential field with moving obstacle for SCARA robot. At every sampling time, the artificial potential field is update and the force driving manipulator is derived from the gradient vector of artificial potential field. To real-time path planning, we apply very simple modeling to obstacle. Some simulation results show the effectiveness of the proposed approach.

  • PDF

Motion Control of an Outdoor Patrol Robot using a Single Laser Range Finder (야외 순찰로봇을 위한 단일 레이저거리센서 기반 충돌 회피 주행 제어기법 개발)

  • Hong, Seung-Bohm;Shin, You-Jin;Chung, Woo-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.361-367
    • /
    • 2010
  • This paper reports the development of a mobile robot for patrol using a single laser range finder. A Laser range finder is useful for outdoor environment regardless of illumination change or various weather conditions. In this paper we combined the motion control of the mobile robot and the algorithm for detecting the outdoor environment. For obstacle avoidance, we adopted the Vector Field Histogram algorithm. A laser range finder is mounted on the mobile robot and looking down the road with a small tilt angle. We propose an algorithm for detecting the surface of the road. The outdoor patrol robot platform is equipped with a DGPS system, a gyro-compass sensor, and a laser range finder. The proposed obstacle avoidance and road detection algorithms were experimentally tested in success.

Field Experiment of a LiDAR Sensor-based Small Autonomous Driving Robot in an Underground Mine (라이다 센서 기반 소형 자율주행 로봇의 지하광산 현장실험)

  • Kim, Heonmoo;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.76-86
    • /
    • 2020
  • In this study, a small autonomous driving robot was developed for underground mines using the Light Detection and Ranging (LiDAR) sensor. The developed robot measures the distances to the left and right wall surfaces using the LiDAR sensor, and automatically controls its steering to drive along the centerline of mine tunnel. A field experiment was conducted in an underground amethyst mine to test the driving performance of developed robot. During five repeated driving tests, the robot showed stable driving performance overall. There were no collision accidents with the wall of mine tunnel.

Obstacle Avoidance Using Velocity Dipole Field Method

  • Munasinghe, Sudath R.;Oh, Chang-Mok;Lee, Ju-Jang;Khatib, Oussama
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1657-1661
    • /
    • 2005
  • The velocity dipole field method is presented for real-time collision avoidance of mobile robots. The direction of motion of the obstacle is used as the axis of the dipole field, and the speed of the obstacle is used to proportionally strengthen the dipole field. The elliptical field lines of the dipole field are useful to skillfully guide the robot around obstacles, quite similar to the way humans avoid moving obstacles. Field modulation coefficient is also introduced to weaken the field effect as the obstacle recedes. The real-time algorithm of the velocity dipole field has been devised and experimentally tested on the robot soccer test-bed. The results show the capability of the new real-time collision avoidance strategy and how it can overcome the weaknesses in the conventional potential field method. The new method makes an explicit and proactive action of collision avoidance, unlike the conventional method, which forces the robot merely away from the obstacle aimlessly. The proposed method delivers greater capability with no considerable computational overhead

  • PDF

Fuzzy Steering Controller for Outdoor Autonomous Mobile Robot using MR sensor (MR센서를 이용한 실외형 자율이동 로봇의 퍼지 조향제어기에 관한 연구)

  • Kim, Jeong-Heui;Son, Seok-Jun;Lim, Young-Chelo;Kim, Tae-Gon;Kim, Eui-Sun;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.27-32
    • /
    • 2002
  • This paper describes a fuzzy steering controller for an outdoor autonomous mobile robot using MR(magneto-resistive) sensor. Using the magnetic field difference values(dBy, dBz) obtained from the MR sensor, we designed fuzzy logic controller for driving the robot on the road center and proposed a method to eliminate the Earth magnetic field. To develop an autonomous mobile robot simulation program, we have done modeling MR sensor, mobile robot and coordinate transformation. A computer simulation of the robot including mobile robot dynamics and steering was used to verify the driving performance of the mobile robot controller using the fuzzy logic. So, we confirmed the robustness of the proposed fuzzy controller by computer simulation.

An Implementation of the Control System of the Mobile Robot using ROS (ROS를 이용한 이동 로봇 제어 시스템 구현)

  • Moon, Yong-Seon;Roh, Sang-Hyun;Lim, Seung-Woo;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1713-1718
    • /
    • 2013
  • In this paper we implement collision avoidance using an artificial potential field and remote control of a mobile robot through ROS(Robot Operating System) among the robot's middleware. We also apply dynamic reconfigure to a node of collision avoidance. The main purposes of ROS are sharing and cooperation. In order to make to fit the purpose of ROS, the hardware that frequently is used in the robot such as LRF and joystick, were reused as node that provide in the ROS.

Obstacle a voidance using VFH (Vector Field Histogram) in four legged robot (VFH(Vector Field Histogram)을 이용한 4족 로봇의 장애물 회피)

  • Jung, Hyun-Ryong;Kim, Young-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.23-26
    • /
    • 2003
  • The vector field histogram(VFH) uses a two-dimensional Cartesian histogram grid as a world model. The VFH method subsequently employs a two-stage data-reduction process in order to compute the desired control commands for the vehicle. In the first stage the histogram grid is reduced to a one dimensional polar histogram that is constructed around the robot's momentary location. Each sector in the polar histogram contains a value representing the polar obstacle density in that direction. In the second stage, the algorithm selects the most suitable sector from among all polar histogram sectors with a low polar obstacle density, and the steering of the robot is aligned with that direction. We applied this algorithm to our four-legged robot.

  • PDF

Field working and Fire extinguishing performance of an Indoor Fire-fighting Robot (실내화재진압로봇의 현장운용 및 소화성능평가)

  • Kwark, Ji-Hyun;Kim, Jong-Kwon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.163-167
    • /
    • 2008
  • Fire-fighters are struggling against heat and dense smoke by fire when it occurs at the basement or the inner place of a building. An indoor fire-fighting robot with well heat-resistance, great searching cameras and good extinguishing ability has been developed. It never suffocate, coming into the fire district and extinguishes fire directly. In this study, several experiment was conducted to evaluate field working ability of the fire-fighting robot. As a result, a series of passing obstacles, finding fire place and fire suppression by the remote controlling with image information appeared satisfactory.

  • PDF

A Study on Simscape based 6DOF Field Robot Simulation Model (Simscape 기반 6자유도 필드로봇 시뮬레이션 모델에 관한 연구)

  • Choi, Seong Woong;Kwak, Kyung Sin;Le, Quang Hoan;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Field robots operate in various areas, including construction, agriculture, forestry and manufacturing. Typical tasks of field robots used in various areas include excavation, flattening, and demolition. Such tasks are often accomplished in narrow alleys or indoors. In the case of field robots, there is a limit to working in a small space. Thus, to compensate for these shortcomings, many field robots equipped with Tiltrotators have recently been observed. The advantages of Tiltrotator are improved task efficiency and reduced operating time by reducing unnecessary behavior. We need simulation models that can improve the ability of new people to work and simulate tasks in advance. Thus, in this paper, we developed a simscape-based simulation model and modeling of 6DOF systems for field robots equipped with Tiltrotator. Dynamic modeling of field robot 3D models using Simcape multibody and hydraulic systems of field robots using Simcape Hydraulics were modeled. We applied a PID controller to create a control system that operates along the input angle. Simulation results show that errors occur when comparing input and output angles, but overall, they move along input angles.

A Study on Human-Friendly Guide Robot (인간친화적인 안내 로봇 연구)

  • Choi, Woo-Kyung;Kim, Seong-Joo;Ha, Sang-Hyung;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.9-15
    • /
    • 2006
  • The recent development in robot field shows that service robot which interacts with human and provides specific service to human has been researched continually. Especially, robot for human welfare becomes the center of public concern. At present time, guide robot is priority field of general welfare robot and helps the blind keep safe path when he walks outdoor. In this paper, guide robot provides not only collision avoidance but also the best walking direction and velocity to blind people while recognizing environment information from various kinds of sensors. In addition, it is able to provide the most safe path planing on behalf of blind people.