• Title/Summary/Keyword: Field Robot

Search Result 701, Processing Time 0.035 seconds

Trajectory Tracking Control of Field Robot using Adaptive Control and System Identification (적응제어 및 시스템 규명을 이용한 Field Robot의 궤적 추종 제어)

  • 서우석;김승수;양순용;이병룡;안경관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.469-474
    • /
    • 2002
  • The Field Robot means the machinery applied for outdoor tasks in construction, agriculture and undersea etc. In this study, to field-robotize a hydraulic excavator that is mostly used in construction working, we have developed an automatic excavation system and adaptive control system. A model- reference adaptive controller has been designed on the model that is obtained through off-line System Identification. It is illustrated by computer simulations that the proposed control system gives good performances in the trajectory tracking control and adaptation to parameter variation.

  • PDF

Formation Control for Swarm Robots Using Artificial Potential Field (인공 포텐셜 장을 이용한 군집 로봇의 대형 제어)

  • Kim, Han-Sol;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.476-480
    • /
    • 2012
  • In this paper, artificial potential field(APF) is applied to formation control for the leader-following swarm robot. Furthermore, APF is constructed by applying the electrical field model. Moreover, to model the obstacle effectively, each obstacle has different form due to the electrical field equation. The proposed method is formed as two sub-objective: path planning for the leader-robot and following-robots following the leader-robot. Finally, simulation example is given to prove the validity of proposed method.

Development of a Robot System for Automatic De-palletizing of Parcels loaded in Rolltainer (롤테이너 적재 소포를 자동으로 디팔레타이징하기 위한 로봇 시스템 개발)

  • Kim, Donghyung;Lim, Eul Gyoon;Kim, Joong Bae
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.431-437
    • /
    • 2022
  • This paper deals with a study on the automatic depalletizing robot for parcels loaded in rolltainer of domestic postal distribution centers. Specifically, we proposed a robot system that detect parcels loaded in a rolltainer with a 3D camera and perform de-palletizing using a cooperative robot. In addition, we developed the task flow chart for parcel de-palletizing and the method of retreat motion generation in the case of collision with rolltainer. Then, we implemented the proposed methods to the robot's controller by developing robot program. The proposed robot system was installed at the Anyang Post Distribution Center and field tests were completed. Field tests have shown that the robotic system has a success rate of over 90% for depalletizing task. And it was confirmed that the average tact time per parcel was 7.3 seconds.

Univector Field based Obstacle Avoidance Method according to Destination for Mobile Robot (단위 벡터장 기반의 목적지 변화에 따른 이동로봇의 효율적인 장애물 회피에 관한 연구)

  • Park, Hyun-Jeong;Lee, Seung-Gwan;Chung, Tae-Chung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.599-602
    • /
    • 2007
  • Generally, the mobile robot navigation with obstacle avoidance is one of the key issues to be looked into for successful applications of autonomous mobile robots. In this paper, the Univector field based method is proposed for mobile robot to accomplish the obstacle avoidance and the robot orientation at the target position. Univector field method guarantees the desired posture of the robot at the target position. But it is not effective Univector to avoid obstacles. To solve this problem, modified univector field is used. With this proposed method, robot navigation task becomes easier and effectively.

  • PDF

Survey: Gesture Recognition Techniques for Intelligent Robot (지능형 로봇 구동을 위한 제스처 인식 기술 동향)

  • Oh Jae-Yong;Lee Chil-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.771-778
    • /
    • 2004
  • Recently, various applications of robot system become more popular in accordance with rapid development of computer hardware/software, artificial intelligence, and automatic control technology. Formerly robots mainly have been used in industrial field, however, nowadays it is said that the robot will do an important role in the home service application. To make the robot more useful, we require further researches on implementation of natural communication method between the human and the robot system, and autonomous behavior generation. The gesture recognition technique is one of the most convenient methods for natural human-robot interaction, so it is to be solved for implementation of intelligent robot system. In this paper, we describe the state-of-the-art of advanced gesture recognition technologies for intelligent robots according to three methods; sensor based method, feature based method, appearance based method, and 3D model based method. And we also discuss some problems and real applications in the research field.

Teleloperation of Field Mobile Manipulator with Wearable Haptic-based Multi-Modal User Interface and Its Application to Explosive Ordnance Disposal

  • Ryu Dongseok;Hwang Chang-Soon;Kang Sungchul;Kim Munsang;Song Jae-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1864-1874
    • /
    • 2005
  • This paper describes a wearable multi-modal user interface design and its implementation for a teleoperated field robot system. Recently some teleoperated field robots are employed for hazard environment applications (e.g. rescue, explosive ordnance disposal, security). To complete these missions in outdoor environment, the robot system must have appropriate functions, accuracy and reliability. However, the more functions it has, the more difficulties occur in operation of the functions. To cope up with this problem, an effective user interface should be developed. Furthermore, the user interface is needed to be wearable for portability and prompt action. This research starts at the question: how to teleoperate the complicated slave robot easily. The main challenge is to make a simple and intuitive user interface with a wearable shape and size. This research provides multi-modalities such as visual, auditory and haptic sense. It enables an operator to control every functions of a field robot more intuitively. As a result, an EOD (explosive ordnance disposal) demonstration is conducted to verify the validity of the proposed wearable multi-modal user interface.

Computational Flow Analysis and Drag Coefficient Research for Angle of Attack in Slocum Underwater Glider (Slocum 수중 글라이더의 유영 받음각에 대한 전산유동해석 및 항력계수 연구)

  • Park, Jeong-Woo;Lee, Jung-Woo;Choi, Young-Ho;Seo, Kap-Ho;Suh, Jin-Ho;Park, Jong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.381-388
    • /
    • 2016
  • An underwater glider makes it easy to explore a wide area with low power. However, an underwater glider is difficult to use for rapid collection, because the surfacing location cannot be predicted after a dive. Thus, simulation research is needed to predict the swimming path. In this paper, based on research, a linearized equation is derived for the drag coefficient at each angle of attack by assuming the boundary conditions for the Slocum underwater glider and performing a computational flow analysis.

Magnetic Position Sensing System for Autonomous Vehicle and Robot Guidance (자율주행차량과 로봇의 안내를 위한 자계위치인식시스템)

  • Jung, Young-Yoon;Kim, Geun-Mo;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.214-219
    • /
    • 2007
  • In this paper, a new magnetic position sensing mettled for autonomous vehicle and robot guidance is presented. In autonomous vehicle and robot control, position sensing is an important task for the identification of their locations, such as the current position within a trajectory. The magnet based autonomous vehicle and robot was identified position via magnetic materials. In the magnetic sensing system, the Earth field is one of the largest disturbance. To removal of the Earth field, this paper proposes 1-dimensional magnetic field sensors array and develops precise petition sensing system using linear operating region of the magnetic field sensor. This proposal is verified a feasible magnetic position sensing system for autonomous vehicle and robot guidance by the experimental results.

A Method of Path Planning for a Quadruped Walking Robot on Irregular Terrain (불규칙 지형에서 사가 보행 로보트의 경로 계획 방법)

  • ;Zeungnam Biem
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.329-338
    • /
    • 1994
  • This paper presents a novel method of path planning for a quadruped walking robot on irregular terrain. In the previous study on the path planning problem of mobile robots, it has been usually focused on the collision-free path planning for wheeled robots. The path planning problem of legged roboth, however, has unique aspects from the point of viw that the legged robot can cross over the obstacles and the gait constraint should be considered in the process of planning a path. To resolve this unique problem systematically, a new concept of the artificial intensity field of light is numerically constructed over the configuration space of the robot including the transformed obstacles and a feasible path is sought in the field. Also, the efficiency of the proposed method is shown by various simulation results.

  • PDF

Path Planning of Mobile Robot using Weighted Potential Function with Obstacle Avoidance (가중화된 포텐셜 함수를 이용한 이동 로봇의 장애물 회피 경로 계획)

  • Kim, Jin-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.15-19
    • /
    • 2009
  • This paper presents the potential field for mobile robot path planning. The proposed repulsive potential has weighted parts, which consists of conventional repulsive potential and goals nonreachable with obstacles nearby repulsive potential. It ensures the global minimum of the total potential when the robot approaches goals near obstacle and the robot passes the adjacent obstacles. Simulation results shows that the proposed potential is better than conventional potentials.