• Title/Summary/Keyword: Field Programmable Gate Array

Search Result 374, Processing Time 0.025 seconds

FPGA Mapping Incorporated with Multiplexer Tree Synthesis (멀티플렉서 트리 합성이 통합된 FPGA 매핑)

  • Kim, Kyosun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.37-47
    • /
    • 2016
  • The practical constraints on the commercial FPGAs which contain dedicated wide function multiplexers in their slice structure are incorporated with one of the most advanced FPGA mapping algorithms based on the AIG (And-Inverter Graph), one of the best logic representations in academia. As the first step of the mapping process, cuts are enumerated as intermediate structures. And then, the cuts which can be mapped to the multiplexers are recognized. Without any increased complexity, the delay and area of multiplexers as well as LUTs are calculated after checking the requirements for the tree construction such as symmetry and depth limit against dynamically changing mapping of neighboring nodes. Besides, the root positions of multiplexer trees are identified from the RTL code, and annotated to the AIG as AOs (Auxiliary Outputs). A new AIG embedding the multiplexer tree structures which are intentionally synthesized by Shannon expansion at the AOs, is overlapped with the optimized AIG. The lossless synthesis technique which employs FRAIG (Functionally Reduced AIG) is applied to this approach. The proposed approach and techniques are validated by implementing and applying them to two RISC processor examples, which yielded 13~30% area reduction, and up to 32% delay reduction. The research will be extended to take into account the constraints on the dedicated hardware for carry chains.

The Design of 32 Bit Microprocessor for Sequence Control Using FPGA (FPGA를 이용한 시퀀스 제어용 32비트 마이크로프로세서 설계)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.431-441
    • /
    • 2003
  • This paper presents the design of 32 bit microprocessor for a sequence control using a field programmable gate array(FPGA). The microprocessor was designed by a VHDL with top down method, the program memory was separated from the data memory for high speed execution of sequence instructions. Therefore it was possible that sequence instructions could be operated at the same time during the instruction fetch cycle. In order to reduce the instruction decoding time and the interface time of the data memory interface, an instruction code size was implemented by 32 bits. And the real time debug operation was implemented for easeful debugging the designed processor with a single step run, PC break point run, data memory break point run. Also in this designed microprocessor, pulse instructions, step controllers, master controllers, BM and BCD type arithmetic instructions, barrel shift instructions were implemented for sequence logic control. The FPGA was synthesized under a Xilinx's Foundation 4.2i Project Manager using a V600EHQ240 which contains 600,000 gates. Finally simulation and experiment were successfully performed respectively. For showing good performance, the designed microprocessor for the sequence logic control was compared with the H8S/2148 microprocessor which contained many bit instructions for sequence logic control. The designed processor for the sequence logic showed good performance.

Cascade CNN with CPU-FPGA Architecture for Real-time Face Detection (실시간 얼굴 검출을 위한 Cascade CNN의 CPU-FPGA 구조 연구)

  • Nam, Kwang-Min;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.388-396
    • /
    • 2017
  • Since there are many variables such as various poses, illuminations and occlusions in a face detection problem, a high performance detection system is required. Although CNN is excellent in image classification, CNN operatioin requires high-performance hardware resources. But low cost low power environments are essential for small and mobile systems. So in this paper, the CPU-FPGA integrated system is designed based on 3-stage cascade CNN architecture using small size FPGA. Adaptive Region of Interest (ROI) is applied to reduce the number of CNN operations using face information of the previous frame. We use a Field Programmable Gate Array(FPGA) to accelerate the CNN computations. The accelerator reads multiple featuremap at once on the FPGA and performs a Multiply-Accumulate (MAC) operation in parallel for convolution operation. The system is implemented on Altera Cyclone V FPGA in which ARM Cortex A-9 and on-chip SRAM are embedded. The system runs at 30FPS with HD resolution input images. The CPU-FPGA integrated system showed 8.5 times of the power efficiency compared to systems using CPU only.

A Study on Signal Analysis of the Data Aquisition System for Photosensor (데이터 획득장치에 이용되는 포토센서에 대한 DAS의 신호분석연구)

  • Hwang, InHo;Yoo, Sun Kook
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.237-242
    • /
    • 2016
  • The major advantage of slip-ring technology in Spiral CT is that it facilitates continuous rotation of the x-ray tube, so that volume data can be acquired from a patient quickly. Not only for such a fast scan, but also for the dose reduction purpose, high signal-to-noise ratio and fast data acquisition system is required. In this study, we have built a multi-channel photodetector and multi-channel data acquisition system for CT application. The detector module consisted of CdWO4 crystal and Si photodiode in 16 channels. For the performance test of the preamplifier stage, both the transimpedance and switched integrator types are optimized for the photodetector modules. Switched integrator showed better noise performance in the limited bandwidth which is suitable for the current CT application. The control sequence for data acquisition and 20 bit ADC is designed with VHDL(Very High Speed Integrated Circuit Hardware Description Language) and implemented on FPGA(Field Programmable Gate Array) chip. Our Si photodiode detector module coupled to CdWO4 crystal showed comparable signal with other commercially available photodiode for CT. Switched integrator type showed higher SNR but narrower bandwidth compared to transimpedance preamplifier. Digital hardware is designed by FPGA, so that the control signal could be redesigned without hardware alteration.