• Title/Summary/Keyword: Field Oriented Control

Search Result 247, Processing Time 0.023 seconds

Parameters Estimation Characteristics of Five-Phase Squirrel-Cage Induction Motor within Over Current Load (과전류 부하에서 5상 농형 유도전동기의 정수 특성)

  • Kim, Min-Huei
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.38-46
    • /
    • 2015
  • This paper propose a variable parameter estimations for variable over current load of five-phase squirrel-cage induction motor(IM) to servo control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, torque command of current components, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental within variable over current load at rated input frequency. There are results of stator winding measurement, no-load test, locked-rotor test, variable over current load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

A Wind Turbine Simulator with Variable Torque Input (풍력 터빈 모의 실험을 위한 가변 토오크 입력형 시뮬레이터)

  • Jeong, Byeong-Chang;Song, Seung-Ho;No, Do-Hwan;Kim, Dong-Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.467-474
    • /
    • 2002
  • In this paper, a wind power simulator is designed and implemented. To realize the torque of wind blade, a DC motor is used as a variable torque input device. An induction machine is used as a generator of which speed is controlled to maintain the optimal tip speed ratio during wind speed change. Input torque of system is controlled by armature current of DC motor and speed is controlled by generator control unit using field oriented control algorithm. Various control algorithms such as MPPT, soft start up, the simulator reactive power control, can be developed and tested using the simulator.

The Study of Sliding Mode Variable Structure-Fuzzy Induction Motor Control using Simulink (Simulink를 이용한 슬라이딩모드 가변구조-퍼지 유도전동기 속도제어에 관한 연구)

  • Kim, Sang-Woo;Kim, Byung-Jin;Jung, Eul-Gi;Jeon, Hee-Jong
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.361-365
    • /
    • 1998
  • In this paper, the sliding mode variable structure-fuzzy(SMVS-F) control algorithm is applied to speed controller for field oriented induction motor drive system. According to the principle of sliding mode variable structure-fuzzy adjustable speed control scheme, the proposed algorithm shows good performances which are reducing chattering, robustness against parameter variation in induction motor drive. The validity of the proposed control scheme is verified by computer simulation using SIMULINK.

  • PDF

Sensorless Speed Control of Induction Motor using Adaptive Observer (적응관측기에 의한 유도전동기의 센서리스 속도제어)

  • Oh, S.H.;Kim, S.H.;Jin, D.W.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.109-111
    • /
    • 1997
  • A sensorless drive of induction motor has several advantages; low cost and mechanical simplicity. This paper investigates a field-oriented control method without speed and flux sensors. The control strategy is to design an adaptive state observer for flux estimation and to estimate the rotor speed from the estimated rotor flux and stator current. The entire control algorithm including space vector PWM is implemented by software of the digital signal processor TMS320C31. The experimental results indicate good speed responses.

  • PDF

An Effect of Maximizing Efficiency Control of Induction Motor for Electric Vehicle Drive Systems(I) (전기자동차 구동시스템에서의 유도전동기의 최대효율제어 효과(I))

  • 최욱돈;김동희;노채균
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.83-88
    • /
    • 2000
  • The purpose of this paper is to evaluate practical advantage in using maximizing efficiency control strategy in induction motor drives for electric vehicles. A maximizing efficiency control strategy consist of a flux estimation with direct field oriented controller is proposed and compared with the general constant flux control strategy. The comparison is carried out by simulation. The results are included to show the effectiveness of the proposed strategy in the electric vehicle applications.

  • PDF

Parameters Estimation of Five-Phase Squirrel-Cage Induction Motor in Changing Variable Frequency (주파수 변화에 따른 5상 농형 유도전동기의 정수 추정)

  • Kim, Min-Huei
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.241-247
    • /
    • 2014
  • This paper propose a variable parameter estimations of five-phase squirrel-cage induction motor(IM) for speed control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental of variable input power frequency. There are results of stator winding test, no-load test, locked-rotor test, variable actual load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

Position Estimator Employing Kalman Filter for PM Motors Driven with Binary-type Hall Sensors

  • Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.931-938
    • /
    • 2016
  • Application of vector control scheme for consumer products is enlarging to improve control performance. For the field-oriented control, accurate position detection is essential and generally requires expensive sensors. On the other hand, cost-reduction is important in home appliances, so that binary-type Hall-effect sensors are commonly used rather than using an expensive sensor such as an encoder. The control performance is directly influenced by the accuracy of the position information, and there exist non-uniformities related to Hall sensors in electrical and mechanical aspects, which result in distorted position information. Therefore, to get high-precision position information from low-resolution Hall sensors, this paper proposes a new position estimator consisting of a Kalman filter and feedforward compensation scheme, which generates a linearly changing position signal. The efficacy of the proposed scheme is verified by simulation and experimental results carried out with a 48-pole permanent magnet motor.

A Study on the Design of Railway Electornic Interlocking Software Based on Real-Time Object-Oriented Modeling Technique (ROOM기법을 이용한 전자연동 소프트웨어 설계에 관한 연구)

  • Kim, Jong-Sun;Yoo, Ji-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.439-446
    • /
    • 2001
  • This paper considers the design technique of the real-time control algorithm to implement the electronic interlocking system which is the most important station control system in railway signal field. The proposed technique consists of the structure design and the detail design which are based on the ROOM(Real-Time Object-Oriented Modeling). The structure design is designed with a modeling using the heuristic search technique which, at first, catch and make out the specific requested condition, and then, is designed on the requested condition. The detail design can be implemented if it may get the satisfying values through the repetitive modeling after comparing and examining the data obtained from the structure design in order for the more reliable and accurate system to be implemented. The technique proposed in this paper is implemented with C++ language which is easy to be transferred and compatible with the existing interfaces, and also the operating system is designed and simulated on the VRTX which is a real-time operating system. This proposed technique is applied to the typical station model in order to prove the validity as verifying the performance of the modeled station.

  • PDF

Robust Fuzzy Logic Current and Speed Controllers for Field-Oriented Induction Motor Drive

  • El-Sousy, Fayez F.M.;Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.115-123
    • /
    • 2003
  • This paper presents analysis, design and simulation for the indirect field orientation control (IFOC) of induction machine drive system. The dynamic performance of the IFOC under nominal and detuned parameters of the induction machine is established. A conventional proportional plus integral-derivative (PI-D) two-degree-of-freedom controller (2DOFC) is designed and analysed for an ideal IFOC induction machine drive at nominal parameters with the desired dynamic response. Varying the induction machine parameters causes a degredation in the dynamic response for disturbance rejection and tracking performance with PI-D 2DOF speed controller. Therefore, conventional controllers can nut meet a wide range of speed tracking performance under parameter variations. To achieve high- dynamic performance, a proposed robust fuzzy logic controllers (RFLC) for d-axis rotor flux, d-q axis stator currents and rotor speed have been designed and analysed. These controllers provide robust tracking and disturbance rejection performance when detuning occurres and improve the dynamic behavior. The proposed REL controllers provide a fast and accurate dynamic response in tracking and disturbance rejection characteristics under parameter variations. Computer simulation results demonstrate the effectiveness of the proposed REL controllers and a robust performance is obtained fur IFOC induction machine drive system.

The Effect of a Convergence Approach of Home Environment Modification and Task-oriented Intervention on Fall Efficacy and Activity Level of Person with Stroke in the Community (가정환경 수정과 과제기반 중재의 융복합 접근이 지역사회 뇌졸중 환자의 낙상 효능감 및 활동 수준에 미치는 영향)

  • Kim, Su-Kyoung
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.39-46
    • /
    • 2022
  • The purpose of this study is to determine the effect of a convergence approach, which applies both home environment modification applied with assistive technology and task-oriented intervention using a fall safety checklist, on the fall efficacy and activity level of stroke patients. 41 persons with stroke(21 experimental groups and 20 control groups) were divided into experimental and control groups. The experimental group was applied environmental modification and the task-oriented intervention using the fall safety checklist for 4 weeks. The control group was provided only the environmental modification. Before and after the intervention, the Korean Activity Card Sort (KACS) and the Korean Falls Efficacy Scale-Korean version (FES-K) were used for evaluation. There was no significant difference in fall efficacy and activity level change between the experimental group and the control group. Both the experimental group and the control group significantly improved the fall efficacy and activity level after the intervention. By applying the results of this study to the clinical field, it will be possible to support stroke patients to live safely and actively participate in the community.