• Title/Summary/Keyword: Field Measurement

Search Result 5,055, Processing Time 0.036 seconds

Development of Micro-size Search Coil Magnetometer for Magnetic Field Distribution Measurement

  • Ka, E.M.;Son, De-Rac
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.34-36
    • /
    • 2008
  • For the measurement of the magnetic field distribution with high spatial resolution and high accuracy, the magnetic field sensing probe must be non-magnetic, but the MFM probe and sub-millimeter-meter size Hall probe use a ferromagnetic tip and block, respectively, to increase the sensitivity. To overcome this drawback, we developed a micro-size search coil magnetometer which consists of a single turn search coil, Terfenol-D actuator, scanning system, and control software. To reduce the noise generated by the stray ac magnetic field of the actuator driving coil, we employed an even function $\lambda$-H magnetostriction curve and lock-in technique. Using the developed magnetometer, we were able to measure the magnetic field distribution with a magnetic field resolution of 1 mT and spatial resolution of $0.1mm{\times}0.2mm$ at a coil vibration frequency of 1.8 kHz.

Measurement and Analysis of Electromagnetic field for DC electric railway train (직류철도차량에 대한 자계측정 및 분석)

  • Jang, Dong-Uk;Kim, Min-Cheol;Lee, Chang-Mu;Han, Moon-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1637-1639
    • /
    • 2005
  • The measurement of magnetic field is performed about DC and AC magnetic field in test track of depot. The test point is cap, on the converter/inverter box, on the traction motor, on the APSE and on the line filter, the height of measurement is bottom and 50 cm height. In case of AC magnetic field, the selected specific frequency is measured on the converter/inverter box. The AC magnetic field is checked and analysis through RS-232C and notebook PC. The DC magnetic field is measured by using the Hall Probe, test result is saved and analysis by PXI system. On the line filter, the maximum value is 1.4 mT in case of DC magnetic field and 0.044 mT in case of AC magnetic field at 50 Hz.

  • PDF

Analysis on Electric Field Based on Three Dimensional Atmospheric Electric Field Apparatus

  • Xing, Hong-yan;He, Gui-xian;Ji, Xin-yuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1697-1704
    • /
    • 2018
  • As a key component of lighting location system (LLS) for lightning warning, the atmospheric electric field measuring is required to have high accuracy. The Conventional methods of the existent electric field measurement meter can only detect the vertical component of the atmospheric electric field, which cannot acquire the realistic electric field in the thunderstorm. This paper proposed a three dimensional (3D) electric field system for atmospheric electric field measurement, which is capable of three orthogonal directions in X, Y, Z, measuring. By analyzing the relationship between the electric field and the relative permittivity of ground surface, the permittivity is calculated, and an efficiency 3D measurement model is derived. On this basis, a three-dimensional electric field sensor and a permittivity sensor are adopted to detect the spatial electric field. Moreover, the elevation and azimuth of the detected target are calculated, which reveal the location information of the target. Experimental results show that the proposed 3D electric field meter has satisfactory sensitivity to the three components of electric field. Additionally, several observation results in the fair and thunderstorm weather have been presented.

Dynamic Magnetic Field Measurement in the Air Gap of Magnetic Bearings Based on FBG-GMM Sensor

  • Jiayi, Liu;Zude, Zhou;Guoping, Ding;Huaqiang, Wang
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.575-585
    • /
    • 2015
  • Magnetic field in magnetic bearings is the physical medium to realize magnetic levitation, the distribution of the magnetic field determines the operating performance of magnetic bearings. In this paper, a thin-slice Fiber Bragg Grating-Giant Magnetostrictive Material magnetic sensor used for the air gap of magnetic bearings was proposed and tested in the condition of dynamic magnetic field. The static property of the sensor was calibrated and a polynomial curve was fitted to describe the performance of the sensor. Measurement of dynamic magnetic field with different frequencies in magnetic bearings was implemented. Comparing with the finite element simulations, the results showed the DC component of the magnetic field was detected by the sensor and error was less than 5.87%.

ZOOMING FUNCTIONAL METHOD FOR POSITION MEASUREMENT IN ENCLOSING SIGNAL FIELD BASED N CONCEPT OF PROGRESSIVE LEARNING MEASUREMENT SYSTEM

  • Ohyama, Shinji;Cao, Li;Kobayashi, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1318-1321
    • /
    • 1997
  • A method for two-dimensional position measurement using an enclosing field has been studied and reported. The feature of this mehtod is zooming functional measurement by operating both the initial phase shift and the brightness ratio of the lighting function. An experimental system was developed and the experimental results on zooming effects are shown in this paper. This system is also an example of a "progressive learning measurement system".tem".uot;.

  • PDF

Effect of sensor positioning error on the accuracy of magnetic field mapping result for NMR/MRI

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.28-32
    • /
    • 2015
  • Nowadays the magnetic field mapping is widely used in the design and analysis of the NMR/MRI magnet system, and the accuracy of mapping result has become more and more important. There are several factors affecting the accuracy of the mapping such as the mapping method, the precision of the sensor, the position of the measurement points, the calculation accuracy, and so on. In this paper the error due to the misalignment of the measurement points was discussed. The magnetic field in the central volume was mapped using an indirect method in an MRI magnet system and the magnetic field was fitted to a polynomial. Considering the misalignment between the original measurement points and the practical measurement points, there must be some errors in the mapping calculation and we called it positioning error. Several comparisons of the positioning error have been presented through the theoretical estimates and the exact magnetic field values. Finally, the allowable positioning errors were suggested to guarantee the accuracy of the magnetic field mapping within a certain degree for an example case.

Time-domain measurement and spectral analysis of low frequency magnetic field on board of rolling stock (전기철도 차량에 대한 극저주파 자계영역의 시간영역 측정 및 스펙트럼 분석)

  • Jang, Dong-Uk;Chung, Sang-Gi
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.263-268
    • /
    • 2008
  • The measurement of magnetic field is performed AC magnetic field emission density in driver cab and saloon's compartment of rolling stock. In order to measure magnetic-field emission, a three-axial magnetic-field sensor is used and connected to data process system. The AC magnetic field is checked and analysis through BNC output, DAQ cad and notebook PC. The spectral analysis is performed by short time Fourier transform(STFT) for time-domain emission signal.

  • PDF

A wireless high-frequency anemometer instrumentation system for field measurements

  • Huang, Guoqing;Peng, Liuliu;Su, Yanwen;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.739-749
    • /
    • 2015
  • Field measurement of wind characteristics is of great significance for the wind engineering community. High-frequency anemometers such as ultrasonic anemometers are widely used to obtain the high-frequency fluctuating wind speed time history. However, conventional instrumentation systems may suffer from low efficiency, non-real time transmission and higher maintenance cost, and thus are not very appropriate in the field measurement of strong winds in remote areas such as mountain valleys. In order to improve the field measurement performance in those remote areas, a wireless high-frequency anemometer instrumentation system for field measurement has been developed. In this paper, the architecture of the proposed instrumentation system, and measured data transmission and treatment will be presented firstly. Then a comparison among existing instrumentation systems and the proposed one is made. It shows that the newly-developed system has considerable advantages. Furthermore, the application of this system to the bridge site located in the mountain valley is discussed. Finally, typical samples of measured data from this area are presented. It can be expected that the proposed system has a great application potential in the wind field measurement for remote areas such as the mountainous or island or coastal area, and hazardous structures such as ultra-voltage transmission tower, due to its real-time transmission, low cost and no manual collection of data and convenience.

Telemetering System of Extremely Low Frequency Magnetic Field Intensity (극저주파 자계 세기를 원격 측정하는 장치)

  • Yoo, Ho-Sang;Wang, Jong-Uk;Seo, Geun-Mee;Gimm, Yoon-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.553-562
    • /
    • 2007
  • In this paper, we designed and implemented the system for telemetering ELF(Extremely Low Frequency) magnetic field intensity. The magnetic field measurement system used a 3-axis magnetic field sensor to measure the magnetic field with isotropy and the equalizer to compensate the frequency characteristic in band. By multiplexing three output signals of the magnetic field sensor in time domain, we got the uniform gain and frequency characteristic among three axes. This system was designed that the magnetic field measurement level range was $0.01{\sim}10.0\;uT$ and the measurement frequency band was $40{\sim}180\;Hz$. The control system would access to the magnetic field measurement system with RF and the maximum access distance was 1.0 km. We confirmed that the measurement level error of the fabricated system was within 5 %. The fabricated system was installed to a golf practice range where a high voltage power transmission line was crossed.

MEASUREMENT OF FIELD PERFORMANCE FOR TRACTOR

  • M. J. NahmGung;Park, C. H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.819-826
    • /
    • 2000
  • This study was performed to develop a measurement system of tractor field performance for plow and rotary operations. Measurement system for tractor consisted of torque sensors to measure torque of drive axles and PTO axle, speed sensors to measure rotational speed of drive axles and engine, microcomputer to control data logger, and data logger as I/O interface system. The measurement system was installed on four-wheel-drive tractor. Four-element full-bridge type strain gages were used for torque measurement of drive axles and optical encoders were used to measure speeds of drive axles and engine. Slip rings were mounted on the rotational axles. Signals from sensors were inputted to data logger that was controlled by microcomputer with parallel communication. Sensors were calibrated before the field tests. Regression equations were found on completion of the calibrations. The field experiment was performed at paddy fields and uplands. Rotary and plow were used when the tractor was operated in the field. Travelling speeds of the tractor were 1.9 km/h, 2.7 km/h, 3.7 km/h, 5.5 km/h, 8.2 km/h, and 11.8 km/h. Operating depths of implements were maintained approximately 20cm during the tests. Torque data of drive axles were different at each location during plow and rotary operations. Results showed that torque of rear axles were greater than those of front axles. Total torque were 6860 - 11064 Nm at the upland and 7360 - 14190 Nm at the paddy field for plow operations. It was found that torque at the paddy field were about 20% greater than those at the upland for plow operations. Torque data showed that rotary operations required less power than plow operation at the paddy field and the upland. Torque measurements at each axle for rotary operations were only 8 - 16% of plow operations in the upland and 15 - 20% in the paddy field.

  • PDF