• Title/Summary/Keyword: Field Installation

Search Result 1,198, Processing Time 0.027 seconds

Aging Diagnosis of Underground Distribution Power Cables by Isothermal Relaxation Current Measurement Equipment (완화전류 측정에 의한 지중배전케이블의 열화진단)

  • Kim, Ju-Yong;Song, Il-Keun;Kim, Dong-Myung;Yun, Tae-Sang;Jeong, Sang-Bong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.502-505
    • /
    • 2004
  • The purpose of this experiment is to modify diagnosis criterion of isothermal relaxation current(IRC) measurement equipment which is using for distribution cable diagnosis. We're using this system for several years in the field instead of DC leakage current measurement and lots of cables were replaced. But we have to investigate on the reliability of this equipment for our cables because we didn't carried out condition assessment of extracted cables after field diagnosis by this equipment. It is important thing for cable maintenance. If the replacement criterion is improper we can not prevent failures or will waste budget on account of replacement of the sound cables. In this papar we selected field installed cables and injected silicone fluid to the cables for insulation rehabilitation. In order to prove reliability of the diagnosis equipment we compared diagnosis results and AC breakdown strength according to operating time after silicone treatment. This is the results of the field test for 1 year.

  • PDF

A Tuning Method for the Power System Stabilizer of a Large Thermal Power Plant and Its Application to Real Power System : PART II - Field Tests and Verification of PSS Performance (대형 화력발전기 전력계통 안정화장치(IEEEST-PSS)의 정수선정 기법과 실계통 적용: PART II - PSS 현장 성능시험 절차 및 성능검증)

  • Shin, Jeong-Hoon;Nam, Su-Chul;Baek, Seung-Mook;Song, Ji-Young;Lee, Jae-Gul;Kim, Tae-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.114-121
    • /
    • 2011
  • This paper, as the second part of the paper, dealt with the field test and test results to validate PSS(Power System Stabilizer) parameters which are previously tuned in Part 1 paper. In Part 1 of the paper, the selection of parameters such as lead-lag time constants for phase compensation and system gain was optimized by using linear & eigenvalue analyses and they were verified through the time-domain transient stability analysis. In part 2, the performance of PSS was finally verified by the generator's on-line field test. Through the comparisons of simulation results and measured data before and after tuning of the PSS, the models of generator and its controllers including AVR, Governor and PSS used in the simulation are verified and confirmed.

Design of Anisotropic Magnetoresistance Sensor Module for Vehicle Detection (차량감지를 위한 이방성 자기저항센서 모듈의 설계)

  • Choi, Hak-Yun;Lee, Hyeong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.99-105
    • /
    • 2011
  • This paper is about the design of 3-axis magnetic sensor module which detects parking and moving vehicle. For the sensor module, MR Sensor from Honeywell of which maximum measurement range is ${\pm}2$[G] is used. It also consisted of amplifier and sensor filter and fabricated $30{\times}50$[mm] PCB. Fabricated sensor module produced helmholtz coil of which the length is 1.2[m] of 3-axis to know the performance. It installed sensor module at the center and measured the detected magnetic field. In result, 3-axis were detected as 0.2~0.3[mG] and the drift of the fluctuation of magnetic field was stabilized at 0.03[mG] unit. For the performance evaluation of the vehicle detection, after the entry and parking of the vehicle, variation of magnetic field was measured as 0.323~0.695[G] which the average 0.5[G] of the earth magnetic field was the center and the range of variation was confirmed as 0.37[G]. Therefore, the designed magnetic sensor can be used as the vehicle detection sensor module.

Study of New Light Source with Nano Carbon Material (나노카본을 이용한 조명용 신광원에 관한 연구)

  • Kim, Kwang-Bok;Kim, Yong-Won;Jung, Han-Gi;Song, Yoon-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.31-34
    • /
    • 2006
  • The characteristic of carbon nano fiber (CNF) as electron emitters was described. Carbon nano fiber (CNF) of herringbone was prepared by thermal chemical vapor deposition(CVD), mixed with binders and conductive materials, and then were formed by screen-printing process. In order to increase effectively field emissions, the surface treatment of rubbing & peel-off was applied to the printed CNF emitters on cathode electrode. The measurements of field emission properties were carried out by using a diode structure inline vacuum chamber. CNF of herringbone type showed good emission properties that a turn on field was as low as $2.5V/{\mu}m$ and current density was as large as $0.15mA/cm^2$ of $4.5V/{\mu}m$ with electric field. After the vacuum packaged panel of 5-inch in diagonal, the measured white brightness was as high as $7000cd/m^2$ at 1900V of anode and 700V of gate voltage.

  • PDF

A Study on Electric Field Distribution with Bushing Geometry (부싱 형상에 따른 전계 분포에 관한 연구)

  • Cho, Kook-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.7-12
    • /
    • 2008
  • This paper described results for desiging the best effective bushing geometry by comparing the distribution of the electric field according to bushing geometry. Twelve cases of the geometrical change are tried to analysis. Improvement of the insulation strength related with the vector and the electric field distribution are reached to about 0.7[%] and $21{\sim}26[%]$ by changing the electrode length, respectively. Moreover, in cases of the change of insulator thickness at high-voltage parts, the insulation strength relevant to the same parameters as mentioned above are 2[%] and $23{\sim}43[%]$, respectively Consequently, the quenching voltage for interrupting the partial discharge might be improved due to increasing the insulation strength by the geometrical change.

A Study of the PV System for Optimum Design Methods With Loss Parameter Compensation

  • Lee, Kang-Yeon;Choi, Moon-Han;Choi, Youn-Ok;Joeng, Byeong-Ho;Cho, Geum-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.64-75
    • /
    • 2007
  • Photovoltaic systems utilize the infinite clean energy of the sun, without creating any air pollution or noise and mechanical vibration. A PV system operates without the need of fuel, rotation surfaces, high temperatures or high pressures. It is therefore to do maintain and simple to install as well as having a long life cycle. The global market for PV systems continues to grow rapidly by 30[%] per year. This paper suggests a new design method for the PV system installation that will allow to the improvement of system efficiency. This method is in accordance with the loss parameter compensation method designed for the PV systems and investigated through simulation and practical experimentation. It was applied to an interconnected 10[kW] grid PV system and was demonstrated in the field. Features such as solar array, PCS, system efficiency, performance and stability were considered. Through the proposed optimal parameter design method, the features of the system were studied, and the 10[kW] PV system was demonstrated and analyzed.

A Study on the Tracking Method for Solar Module to Derive Optimum Performance (최적 발전성능 도출을 위한 태양광모듈 추적방법에 관한 연구)

  • Kim, Yongjin;Lee, Jong Soo;Chung, Yu-Gun;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.113-118
    • /
    • 2012
  • The photovoltaic is one of the most important sustainable technologies appliable to architectures. The power performance mainly depends on the installation conditions of them. This study aims to evaluate the power performance of photovoltaic system by the installation conditions, the tracking methods and reflecting mirrors. For the study, the Solar Pro computer simulations have been conducted on installation angles, solar azimuth and solar altitude. Also, the field mock-up tests are performed to of its application to verify the simulation results. Both the results of the experiment and the simulation have proved that the efficiency of 90-degree fixed angle method was higher than that of 30-degree fixed angle, the efficiency of altitude tracking was better than that of azimuth tracking method, and changing both the altitude and the azimuth together is more efficient rather than the shortened tracing way. In addition, the light-concentrating method in which the incidence angle of the sun is controlled by an adhered reflector has been analyzed to have better efficiency than the general method of tracing according to the orbit of the sun. Therefore, this thesis is expected to offer the basic data to set a more effective tracing-type of photovoltaic power generation system in the future. For this, more researches are to be conducted hereafter on a high efficiency drive motor and the establishment of an economic system.

SPATIAL AND TEMPORAL INFLUENCES ON SOIL MOISTURE ESTIMATION

  • Kim, Gwang-seob
    • Water Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.31-44
    • /
    • 2002
  • The effect of diurnal cycle, intermittent visit of observation satellite, sensor installation, partial coverage of remote sensing, heterogeneity of soil properties and precipitation to the soil moisture estimation error were analyzed to present the global sampling strategy of soil moisture. Three models, the theoretical soil moisture model, WGR model proposed Waymire of at. (1984) to generate rainfall, and Turning Band Method to generate two dimensional soil porosity, active soil depth and loss coefficient field were used to construct sufficient two-dimensional soil moisture data based on different scenarios. The sampling error is dominated by sampling interval and design scheme. The effect of heterogeneity of soil properties and rainfall to sampling error is smaller than that of temporal gap and spatial gap. Selecting a small sampling interval can dramatically reduce the sampling error generated by other factors such as heterogeneity of rainfall, soil properties, topography, and climatic conditions. If the annual mean of coverage portion is about 90%, the effect of partial coverage to sampling error can be disregarded. The water retention capacity of fields is very important in the sampling error. The smaller the water retention capacity of the field (small soil porosity and thin active soil depth), the greater the sampling error. These results indicate that the sampling error is very sensitive to water retention capacity. Block random installation gets more accurate data than random installation of soil moisture gages. The Walnut Gulch soil moisture data show that the diurnal variation of soil moisture causes sampling error between 1 and 4 % in daily estimation.

  • PDF

A FPGA Implementation of Digital Protective Relays for Electrical Power Installation (전력설비를 위한 디지털보호계전기의 FPGA 구현)

  • Kim, Jong-Tae;Shin, Myong-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.131-137
    • /
    • 2005
  • Protective relays provide important features to electrical power systems for protecting against faults and consequent short circuits. This research presents a novel VLSI design of the digital protective relay, which overcomes today's uP/DSP-based relays. This design features good cancellation of DC/k-th harmonic components, noticeable not performance and flexible Protection behavior in the minimized core area The proposed design was successfully implemented by a FPGA(Field Programmable Gate Array) device and can concurrently process over 16KSPS at less $0.03[\%]$ error rate.

Field Investigation of Debris Flow Hazard Area on the Roadside and Evaluating Efficiency of Debris barrier

  • Lee, Jong Hyun;Lee, Jung Yub;Yoon, Sang Won;Oak, Young Suk;Kim, Jae Jeong;Kim, Seung Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.439-447
    • /
    • 2015
  • In this study, specific sections vulnerable to debris flow damage were selected, and a complete enumeration survey was performed for the sections with debris flow hazards. Based on this, the characteristics of the sections with debris flow hazards and the current status of actions against debris flow were examined, and an efficient installation plan for a debris flow damage prevention method that is required in the future was suggested. The results indicated that in the Route 56 section where the residential density is relatively higher between the two model survey sections, facilities for debris flow damage reduction were insufficient compared to those in the Route 6 section which is a mountain area. It is thought that several sites require urgent preparation of a facility for debris flow damage reduction. In addition, a numerical analysis showed that for debris barriers installed as a debris flow damage prevention method, distributed installation of a number of small-scale barriers facilities within a valley part was more effective than single installation of a large-scale debris barrier at the lower part of a valley.