• Title/Summary/Keyword: Field Computation

Search Result 719, Processing Time 0.026 seconds

The 3rd National Conference Of Professional engineers - Outline of U-City (제3회 전국기술사대회 특집(3차분) - U-City 개요 - 건축전기설비 -)

  • Youn, Gill-Jae
    • Journal of the Korean Professional Engineers Association
    • /
    • v.42 no.6
    • /
    • pp.28-30
    • /
    • 2009
  • There is a proverb in Korea "Don't chase after another." It can be a right proverb in sometimes. However, usually it doesn't fit in these various society, information knowledge society. Modern society requires convergence technology. IBS (Intelligent Building System) requires knowledge of architecture field, electric field, communication field, and computation field. ITS (Intelligent Transport Systems) which is constructing in many cities requires various knowledge as engineering works, electricity, computation, communication and transportation. In the case of u-City, it requires technology of many fields as architecture, electricity, communication, engineering works, transportation, and computation. Anyone who wants to participate in u-City should study and acquire knowledge in various field. Otherwise, it must be failed because of lack of communication like as the Tower of Babel. U-City is not a portion of one field. Therefore, engineers in many fields should cooperate with each other to make u-city as the best product in the world.

  • PDF

A study on electric field computation of dielectric analysis model with the conductivity on its surface (표면에 도전율을 갖는 유전체 해석모델의 전계계산에 관한 연구)

  • Kim, Hyeong-Seok;Lee, Ki-Sik;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.6-8
    • /
    • 1995
  • In this paper, we study the computation of the electric field of dielectric analysis models with the conductivity on its surface. The finite element formulation describes a sinusoidal electrodynamic field computation. One term is added to this functional in order to take the conductivity on its surface into accounts. The electric field computations of the dielectric analysis model are done first with the surface conductivity and second with the volume conductivity. Also, it is shown that a surface conductor with sufficiently large conductivity can be substituted with a floating equipotential line. This method is applied to an insulator in arbitrary shape with the conductivity on its surface.

  • PDF

Design of Finite Field Multiplier for Elliptic Curve Cryptosystems (타원곡선 암호화 시스템을 위한 유한필드 곱셈기의 설계)

  • Lee, Wook;Lee, Sang-Seol
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2576-2578
    • /
    • 2001
  • Elliptic curve cryptosystems based on discrete logarithm problem in the group of points of an elliptic curve defined over a finite field. The discrete logarithm in an elliptic curve group appears to be more difficult than discrete logarithm problem in other groups while using the relatively small key size. An implementation of elliptic curve cryptosystems needs finite field arithmetic computation. Hence finite field arithmetic modules must require less hardware resources to archive high performance computation. In this paper, a new architecture of finite field multiplier using conversion scheme of normal basis representation into polynomial basis representation is discussed. Proposed architecture provides less resources and lower complexity than conventional bit serial multiplier using normal basis representation. This architecture has synthesized using synopsys FPGA express successfully.

  • PDF

Conformal Mapping for Cogging Torque computation in IPM motor (등각 사상법을 이용한 매입형 영구자석 전동기의 코깅토크 해석)

  • Fang, Liang;Kwon, Soon-O;Jung, Jae-Woo;Hong, Jung-Pyo;Ha, Kyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1204-1206
    • /
    • 2005
  • This paper deals with magnetic field analysis and computation of cogging torque in IPM motor with an analytical method, which is based on the Conformal Mapping technique. The magnetic field is analyzed by solving space harmonic field analysis due to inserted PM magnetizing distribution. Conformal Mapping method is then used for considering the slot opening effect and rotor saliency effect on the air-gap field magnetic distribution. Then, by integrating the field over the stator surface, cogging torque is calculated. The validity of the proposed analytical method is confirmed by comparing the results with 2-D FEA results.

  • PDF

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF

A NEW SOLUTION METHOD FOR STATE EQUATIONS OF NONLINEAR SYSTEM

  • Zhang, Cheng-Hui;Tan, Cheng-Hui;Cui, Na-Xin
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.175-184
    • /
    • 1999
  • Along with the computation and analysis for nonlinear system being more and more involved in the fields such as automation control electronic technique and electrical power system the nonlin-ear theory has become quite a attractive field for academic research. In this paper we derives the solutions for state equation of nonlinear system by using the inverse operator expression of the so-lutions is obtained. An actual computation example is given giving a comparison between IOM and Runge-kutta method. It has been proved by our investigation that IOM has some distinct advantages over usual approximation methods in that it is computationally con-venient rapidly convergent provides accurate solutions not requiring perturbation linearization or the massive computation inherent in discrietization methods such as finite differences. So the IOM pro-vides an effective method for the solution of nonlinear system is of potential application valuable in nonlinear computation.

In-network Distributed Event Boundary Computation in Wireless Sensor Networks: Challenges, State of the art and Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2804-2823
    • /
    • 2013
  • Wireless sensor network (WSN) is a promising technology for monitoring physical phenomena at fine-grained spatial and temporal resolution. However, the typical approach of sending each sensed measurement out of the network for detailed spatial analysis of transient physical phenomena may not be an efficient or scalable solution. This paper focuses on in-network physical phenomena detection schemes, particularly the distributed computation of the boundary of physical phenomena (i.e. event), to support energy efficient spatial analysis in wireless sensor networks. In-network processing approach reduces the amount of network traffic and thus achieves network scalability and lifetime longevity. This study investigates the recent advances in distributed event detection based on in-network processing and includes a concise comparison of various existing schemes. These boundary detection schemes identify not only those sensor nodes that lie on the boundary of the physical phenomena but also the interior nodes. This constitutes an event geometry which is a basic building block of many spatial queries. In this paper, we introduce the challenges and opportunities for research in the field of in-network distributed event geometry boundary detection as well as illustrate the current status of research in this field. We also present new areas where the event geometry boundary detection can be of significant importance.

Magnetic Field Gradient Optimization for Electronic Anti-Fouling Effect in Heat Exchanger

  • Han, Yong;Wang, Shu-Tao
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1921-1927
    • /
    • 2014
  • A new method for optimizing the magnetic field gradient in the exciting coil of electronic anti-fouling (EAF) system is presented based on changing exciting coil size. In the proposed method, two optimization expressions are deduced based on biot-savart law. The optimization expressions, which can describe the distribution of the magnetic field gradient in the coil, are the function of coil radius and coil length. These optimization expressions can be used to obtain an accurate coil size if the magnetic field gradient on a certain point on the coil's axis of symmetry is needed to be the maximum value. Comparing with the experimental results and the computation results using Finite Element Method simulation to the magnetic field gradient on the coil's axis of symmetry, the computation results obtained by the optimization expression in this article can fit the experimental results and the Finite Element Method results very well. This new method can optimize the EAF system's anti-fouling performance based on improving the magnetic field gradient distribution in the exciting coil.

Self Organizing Feature Map Type Neural Computation Algorithm for Travelling Salesman Problem (SOFM(Self-Organizing Feature Map)형식의 Travelling Salesman 문제 해석 알고리즘)

  • Seok, Jin-Wuk;Cho, Seong-Won;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.983-985
    • /
    • 1995
  • In this paper, we propose a Self Organizing Feature Map (SOFM) Type Neural Computation Algorithm for the Travelling Salesman Problem(TSP). The actual best solution to the TSP problem is computatinally very hard. The reason is that it has many local minim points. Until now, in neural computation field, Hopield-Tank type algorithm is widely used for the TSP. SOFM and Elastic Net algorithm are other attempts for the TSP. In order to apply SOFM type neural computation algorithms to the TSP, the object function forms a euclidean norm between two vectors. We propose a Largrangian for the above request, and induce a learning equation. Experimental results represent that feasible solutions would be taken with the proposed algorithm.

  • PDF

A Survey on Trust Computation in the Internet of Things

  • Truong, Nguyen B.;Jayasinghe, Upul;Um, Tai-Won;Lee, Gyu Myoung
    • Information and Communications Magazine
    • /
    • v.33 no.2
    • /
    • pp.10-27
    • /
    • 2016
  • Internet of Things defines a large number of diverse entities and services which interconnect with each other and individually or cooperatively operate depending on context, conditions and environments, produce a huge personal and sensitive data. In this scenario, the satisfaction of privacy, security and trust objectives plays a critical role in the success of the Internet of Things. Trust here can be considered as a key property to establish trustworthy and seamless connectivity among entities and to guarantee secure services and applications. The aim of this study is to provide a survey on various trust computation strategies and identify future trends in the field. We discuss trust computation methods under several aspects and provide comparison of the approaches based on trust features, performance, advantages, weaknesses and limitations of each strategy. Finally the research discuss on the gap of the trust literature and raise some research directions in trust computation in the Internet of Things.