• 제목/요약/키워드: Fibroblast growth factor-4

검색결과 115건 처리시간 0.028초

The role of p21/CIP1/WAF1 (p21) in the negative regulation of the growth hormone/growth hormone receptor and epidermal growth factor/epidermal growth factor receptor pathways, in growth hormone transduction defect

  • Kostopoulou, Eirini;Gil, Andrea Paola Rojas;Spiliotis, Bessie E.
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • 제23권4호
    • /
    • pp.204-209
    • /
    • 2018
  • Purpose: Growth hormone transduction defect (GHTD) is characterized by severe short stature, impaired STAT3 (signal transducer and activator of transcription-3) phosphorylation and overexpression of the cytokine inducible SH2 containing protein (CIS) and p21/CIP1/WAF1. To investigate the role of p21/CIP1/WAF1 in the negative regulation of the growth hormone (GH)/GH receptor and Epidermal Growth Factor (EGF)/EGF Receptor pathways in GHTD. Methods: Fibroblast cultures were developed from gingival biopsies of 1 GHTD patient and 1 control. The protein expression and the cellular localization of p21/CIP1/WAF1 was studied by Western immunoblotting and immunofluorescence, respectively: at the basal state and after induction with $200-{\mu}g/L$ human GH (hGH) (GH200), either with or without siRNA CIS (siCIS); at the basal state and after inductions with $200-{\mu}g/L$ hGH (GH200), $1,000-{\mu}g/L$ hGH (GH1000) or 50-ng/mL EGF. Results: After GH200/siCIS, the protein expression and nuclear localization of p21 were reduced in the patient. After successful induction of GH signaling (control, GH200; patient, GH1000), the protein expression and nuclear localization of p21 were reduced. After induction with EGF, p21 translocated to the cytoplasm in the control, whereas in the GHTD patient it remained located in the nucleus. Conclusion: In the GHTD fibroblasts, when CIS is reduced, either after siCIS or after a higher dose of hGH (GH1000), p21's antiproliferative effect (nuclear localization) is also reduced and GH signaling is activated. There also appears to be a positive relationship between the 2 inhibitors of GH signaling, CIS and p21. Finally, in GHTD, p21 seems to participate in the regulation of both the GH and EGF/EGFR pathways, depending upon its cellular location.

온청음 물 추출물의 세포독성, 피부재생, 주름개선, 미백 및 보습 효과 (In Vitro Cytotoxicity, Skin Regeneration, Anti-wrinkle, Whitening and In Vivo Skin Moisturizing Effects of Oncheongeum)

  • 안뜰에봄;김동철
    • 대한한방부인과학회지
    • /
    • 제29권1호
    • /
    • pp.14-34
    • /
    • 2016
  • 목 적: 본 연구에서는 한의학에서 다양한 피부질환과 대사질환에 빈번히 사용되고 있는 온청음 물 추출 동결건조물(수율=13.82%)의 피부 노화 개선 효과 평가의 일환으로 세포독성, 피부재생, 주름개선, 미백 및 보습 효과를 각각 평가하였다.방 법: 본 연구에서는 human normal fibroblast(CRL-2076) 및 B16/F10 murine melanoma(CRL-6475) 세포에 대한 온청음의 세포독성을 MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium Bromide) 방법으로 평가하였으며, 피부 재생 및 주름 개선 효과를 transforming growth factor(TGF)-β1와 비교한 fibroblast의 collagen type I 합성능, phosphoramidon disodium salt(PP)와 비교한 elastase 활성 억제, oleanolic acid(OA)와 비교한 hyaluronidase, collagenase 및 matrix metalloproteinase (MMP)-1 활성 억제를 통해 각각 평가하였고, 미백효과를 B16/F10 murine melanoma cells의 melanin 생성 억제 정도 및 tyrosinase 활성 억제를 통해 arbutin과 비교 평가하였으며, 모든 실험은 OCE의 농도별로 군을 나누어 농도에 따른 효과의 변화를 함께 분석하였다. 보습효과는 흰쥐의 피부 수분함량 변화를 통해 평가하였다.결 과: 본 실험의 결과, 온청음은 human normal fibroblast 및 B16/F10 murine melanoma 세포에 대해 의미 있는 세포독성을 나타내지 않았으며, fibroblast의 collagen type I 합성을 증가시켰고, 세포외 기질의 파괴에 관여한다고 알려진 hyaluronidase, elastase, collagenase 및 MMP-1 활성을 억제하였으며, 피부의 색을 결정하는 melanin 의 생성에 관여하는 tyrosinase의 활성 및 B16/F10 murine melanoma cells의 melanin 생성을 억제하는 것으로 관찰되었다. 이 반응의 효과들은 모두 농도에 비례하여 증가하였고, 이와 함께 정상 매체 대조군에 비해 흰쥐의 피부 수분 함량이 세 용량의 온청음 경구 투여군 모두에서 투여용량 의존적으로 의미 있는 증가를 보였다.결 론: 이상의 결과에서, 온청음은 세포 독성 없이 비교적 우수한 피부 재생, 주름개선, 미백 및 보습 효과를 나타내는 것으로 관찰되어, 차후 피부 노화 억제 개선제 또는 기능성 화장품의 주요 소재로서 그 가치가 매우 높을 것으로 판단되나, 금후 개별 구성 약재 각각에 대한 효능 및 생리활성을 나타내는 화학성분의 검색과 더불어 다양한 방면으로 기전적인 연구와 피부 보호 효과에 대한 in vivo 평가를 체계적으로 수행해야 할 것으로 판단된다.

Kir4.1 is coexpressed with stemness markers in activated astrocytes in the injured brain and a Kir4.1 inhibitor BaCl2 negatively regulates neurosphere formation in culture

  • Kwon, Jae-Kyung;Choi, Dong-Joo;Yang, Haijie;Ko, Dong Wan;Jou, Ilo;Park, Sang Myun;Joe, Eun-Hye
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권6호
    • /
    • pp.565-574
    • /
    • 2021
  • Astrocytes are activated in response to brain damage. Here, we found that expression of Kir4.1, a major potassium channel in astrocytes, is increased in activated astrocytes in the injured brain together with upregulation of the neural stem cell markers, Sox2 and Nestin. Expression of Kir4.1 was also increased together with that of Nestin and Sox2 in neurospheres formed from dissociated P7 mouse brains. Using the Kir4.1 blocker BaCl2 to determine whether Kir4.1 is involved in acquisition of stemness, we found that inhibition of Kir4.1 activity caused a concentration-dependent increase in sphere size and Sox2 levels, but had little effect on Nestin levels. Moreover, induction of differentiation of cultured neural stem cells by withdrawing epidermal growth factor and fibroblast growth factor from the culture medium caused a sharp initial increase in Kir4.1 expression followed by a decrease, whereas Sox2 and Nestin levels continuously decreased. Inhibition of Kir4.1 had no effect on expression levels of Sox2 or Nestin, or the astrocyte and neuron markers glial fibrillary acidic protein and β-tubulin III, respectively. Taken together, these results indicate that Kir4.1 may control gain of stemness but not differentiation of stem cells.

Differential gene expression pattern in brains of acrylamide-administered mice

  • Han, Chang-Hoon
    • 대한수의학회지
    • /
    • 제52권2호
    • /
    • pp.99-104
    • /
    • 2012
  • The present study was performed to evaluate the relationship between the neurotoxicity of acrylamide and the differential gene expression pattern in mice. Both locomotor test and rota-rod test showed that the group treated with higher than 30 mg/kg/day of acrylamide caused impaired motor activity in mice. Based on cDNA microarray analysis of mouse brain, myelin basic protein gene, kinesin family member 5B gene, and fibroblast growth factor (FGF) 1 and its receptor genes were down-regulated by acrylamide. The genes are known to be essential for neurofilament synthesis, axonal transport, and neuroprotection, respectively. Interestingly, both FGF 1 and its receptor genes were down-regulated. Genes involved in nucleic acid binding such as AU RNA binding protein/enoyl-coA hydratase, translation initiation factor (TIF) 2 alpha kinase 4, activating transcription factor 2, and U2AF 1 related sequence 1 genes were down-regulated. More interesting finding was that genes of both catalytic and regulatory subunit of protein phosphatases which are important for signal transduction pathways were down-regulated. Here, we propose that acrylamide induces neurotoxicity by regulation of genes associated with neurofilament synthesis, axonal transport, neuro-protection, and signal transduction pathways.

An Aminopropyl Carbazole Derivative Induces Neurogenesis by Increasing Final Cell Division in Neural Stem Cells

  • Shin, Jae-Yeon;Kong, Sun-Young;Yoon, Hye Jin;Ann, Jihyae;Lee, Jeewoo;Kim, Hyun-Jung
    • Biomolecules & Therapeutics
    • /
    • 제23권4호
    • /
    • pp.313-319
    • /
    • 2015
  • P7C3 and its derivatives, 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol (1) and N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)-4-methylbenzenesulfonamide (2), were previously reported to increase neurogenesis in rat neural stem cells (NSCs). Although P7C3 is known to increase neurogenesis by protecting newborn neurons, it is not known whether its derivatives also have protective effects to increase neurogenesis. In the current study, we examined how 1 induces neurogenesis. The treatment of 1 in NSCs increased numbers of cells in the absence of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), while not affecting those in the presence of growth factors. Compound 1 did not induce astrocytogenesis during NSC differentiation. 5-Bromo-2'-deoxyuridine (BrdU) pulsing experiments showed that 1 significantly enhanced BrdU-positive neurons. Taken together, our data suggest that 1 promotes neurogenesis by the induction of final cell division during NSC differentiation.

조류의 다능성 생식세포주 확립 및 분화 특성에 관한 연구

  • 박태섭;한재용
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2001년도 제18차 정기총회 및 학술발표 PROCEEDINGS
    • /
    • pp.40-46
    • /
    • 2001
  • The use of pluripotent stem cells has tremendous advantages for various purposes but these cell lines with proven germ-line transmission have been completely established only in the mouse. Embryonic germ (EG) cell lines are also pluripotent and undifferentiated stem cells established from primordial germ cells (PGCs). This study was conducted to establish and characterize the chicken EG cells derived from gonadal primordial germ cells. We isolated gonadal PGCs from 5.5-day-old (stage 28) White leghorn (WL) embryos and established chicken EG cells lines with EG culture medium supplemented with human stem cell factor (hSCF), murine leukemia inhibitory factor (mLIF), bovine basic fibroblast growth factor (bFGF), human interleukin-11 (hIL-11), and human insulin-like growth factor-I (hIGF-I). These cells grew continuously for 4 months (10 passages) on a feeder layer of mitotically active chicken embryonic fibroblasts. These cells were characterized by screening with the Periodic acid-Shiff's reaction, anti-SSEA-1 antibody, and a proliferation assay after several passages. As the results, the chicken EG cells maintained characteristics of undifferentiated stem cells as well as that of gonadal PGCs. When cultured in suspension, the chicken EG cells successfully formed an embryoid body and differentiated into a variety of cell types when re-seeded onto culture dish. The chicken EG cells were injected into blastodermal layer at stage X and dorsal aorta of recipient embryo at stage 14 (incubation of 53hrs) and produced chimeric chickens with various differentiated tissues derived from the EG cells. The germline chimeras were also successfully induced by using EG cells. Thus, Chicken EG cells will be useful for the production of transgenic chickena and for studies of germ cell differentiation and genomic imprinting.

  • PDF

Formation of Sensory Pigment Cells Requires Fibroblast Growth Factor Signaling during Ascidian Embryonic Development

  • Kim, Gil-Jung
    • Animal cells and systems
    • /
    • 제7권3호
    • /
    • pp.221-225
    • /
    • 2003
  • The tadpole larva of the ascidian Halocynthia roretzi has two sensory pigment cells in its brain vesicle. To elucidate the temporal requirement for FGF signaling in formation of the pigment cells, embryos were treated with an FGF receptor 1 inhibitor, SU5402, or an MEK inhibitor, U0126 during various embryonic stages. In the present study, it is shown that the embryos treated with SU5402 from the 16-cell stage to the early gastrula stage do not form pigment cells, whereas those treated after the early gastrula stage form pigment cells. In pigment cell formation, embryos suddenly exhibited the sensitivity to SU5402 only for 1 h at the neural plate stage(-4 h after the beginning of gastrulation). When U0126 treatment was carried out at various stages between the 8-cell and late neurula stages, the embryos scarcely formed pigment cells. Pigment cell formation occurred when the embryos were placed in U0126 at early tail bud stage. These results indicate that FGF signaling is involved in pigment cell formation at two separate processes during ascidian embryogenesis, whereas more prolonged period is required for MEK signaling.

Effect of Retinoic Acid on Fgf-8 Expression in Regenerating Urodele Amphibian limbs

  • Han, Man-Jong;Kim, Won-Sun
    • Animal cells and systems
    • /
    • 제6권4호
    • /
    • pp.301-304
    • /
    • 2002
  • In our previous study, we have shown that Fgf-8 is expressed in the basal layer of the apical epithelial cap (AEC) and in the underlying thin layer of mesenchymal tissue of the regenerating limbs of Mexican axolotl, Amby-stoma mexicanum. Our present RT-PCR data also demonstrate that Fgf-8 transcript is localized both in the mesenchymal and epidermal tissues. To understand the effect of retinoic acid (RA) on the expression of Fgf-8 in the regenerating axolotl limbs, RA was injected intraperitoneally at the dediffer-entiation stage of limb regeneration. The RA treatment caused 8 change in the Fgf-8 expression profile of the regenerating limbs. In RA-treated limbs, duration of Fgf-8 expression was prolonged and a high level of expression was maintained during dedifferentiation and blastema formation stages. These results suggest that Fgf-8 is an important molecule in the process of pattern duplication of regenerating salamander limbs evoked by RA treatment.

RNA-Seq explores the functional role of the fibroblast growth factor 10 gene in bovine adipocytes differentiation

  • Nurgulsim Kaster;Rajwali Khan;Ijaz Ahmad;Kazhgaliyev Nurlybay Zhigerbayevich;Imbay Seisembay;Akhmetbekov Nurbolat;Shaikenova Kymbat Hamitovna;Omarova Karlygash Mirambekovna;Makhanbetova Aizhan Bekbolatovna;Tlegen Garipovich Amangaliyev;Ateikhan Bolatbek;Titanov Zhanat Yeginbaevich;Shakoor Ahmad;Zan Linsen;Begenova Ainagul Baibolsynovna
    • Animal Bioscience
    • /
    • 제37권5호
    • /
    • pp.929-943
    • /
    • 2024
  • Objective: The present study was executed to explore the molecular mechanism of fibroblast growth factor 10 (FGF10) gene in bovine adipogenesis. Methods: The bovine FGF10 gene was overexpressed through Ad-FGF10 or inhibited through siFGF10 and their negative control (NC) in bovine adipocytes, and the multiplicity of infection, transfection efficiency, interference efficiency were evaluated through quantitative real-time polymerase chain reaction, western blotting and fluorescence microscopy. The lipid droplets, triglycerides (TG) content and the expression levels of adipogenic marker genes were measured during preadipocytes differentiation. The differentially expressed genes were explored through deep RNA sequencing. Results: The highest mRNA level was found in omasum, subcutaneous fat, and intramuscular fat. Moreover, the highest mRNA level was found in adipocytes at day 4 of differentiation. The results of red-oil o staining showed that overexpression (Ad-FGF10) of the FGF10 gene significantly (p<0.05) reduced the lipid droplets and TG content, and their down-regulation (siFGF10) increased the measurement of lipid droplets and TG in differentiated bovine adipocytes. Furthermore, the overexpression of the FGF10 gene down regulated the mRNA levels of adipogenic marker genes such as CCAAT enhancer binding protein alpha (C/EBPα), fatty acid binding protein (FABP4), peroxisome proliferator-activated receptor-γ (PPARγ), lipoprotein lipase (LPL), and Fas cell surface death receptor (FAS), similarly, down-regulation of the FGF10 gene enriched the mRNA levels of C/EBPα, PPARγ, FABP4, and LPL genes (p<0.01). Additionally, the protein levels of PPARγ and FABP4 were reduced (p<0.05) in adipocytes infected with Ad-FGF10 gene and enriched in adipocytes transfected with siFGF10. Moreover, a total of 1,774 differentially expressed genes (DEGs) including 157 up regulated and 1,617 down regulated genes were explored in adipocytes infected with Ad-FGF10 or Ad-NC through deep RNA-sequencing. The top Kyoto encyclopedia of genes and genomes pathways regulated through DEGs were the PPAR signaling pathway, cell cycle, base excision repair, DNA replication, apoptosis, and regulation of lipolysis in adipocytes. Conclusion: Therefore, we can conclude that the FGF10 gene is a negative regulator of bovine adipogenesis and could be used as a candidate gene in marker-assisted selection.

Effect of Hominis Placenta on cutaneous wound healing in normal and diabetic mice

  • Park, Ji-Yeun;Lee, Jiyoung;Jeong, Minsu;Min, Seorim;Kim, Song-Yi;Lee, Hyejung;Lim, Yunsook;Park, Hi-Joon
    • Nutrition Research and Practice
    • /
    • 제8권4호
    • /
    • pp.404-409
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: The number of diabetic patients has recently shown a rapid increase, and delayed wound healing is a major clinical complication in diabetes. In this study, the wound healing effect of Hominis placenta (HP) treatment was investigated in normal and streptozotocin-induced diabetic mice. MATERIALS/METHODS: Four full thickness wounds were created using a 4 mm biopsy punch on the dorsum. HP was injected subcutaneously at the middle region of the upper and lower wounds. Wounds were digitally photographed and wound size was measured every other day until the 14th day. Wound closure rate was analyzed using CANVAS 7SE software. Wound tissues were collected on days 2, 6, and 14 after wounding for H/E, immunohistochemistry for FGF2, and Masson's trichrome staining for collagen study. RESULTS: Significantly faster wound closure rates were observed in the HP treated group than in normal and diabetes control mice on days 6 and 8. Treatment with HP resulted in reduced localization of inflammatory cells in wounded skin at day 6 in normal mice and at day 14 in diabetic mice (P < 0.01). Expression of fibroblast growth factor (FGF) 2 showed a significant increase in the HP treated group on day 14 in both normal (P < 0.01) and diabetic mice (P < 0.05). In addition, HP treated groups showed a thicker collagen layer than no treatment groups, which was remarkable on the last day, day 14, in both normal and diabetic mice. CONCLUSIONS: Taken together, HP treatment has a beneficial effect on acceleration of cutaneous wound healing via regulation of the entire wound healing process, including inflammation, proliferation, and remodeling.