• Title/Summary/Keyword: Fibroblast growth factor

Search Result 290, Processing Time 0.028 seconds

PRODUCTION OF TRANSFORMING GROWTH FACTOR-${\beta}_1$ IN HUMAN FIBROBLASTS INDUCED WITH BACTERIAL TOXINS (세균 독소를 작용시킨 섬유아 세포에서 Transforming Growth Factor-${\beta}_1$의 생성)

  • Lee, Seong-Geun;Kim, Kwang-Hyuk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.4
    • /
    • pp.345-354
    • /
    • 2000
  • TGF-${\beta}_1$ is a potent chemotactic factor for inflammatory cells and fibroblasts. It also stimulates the celluar source and components of extracellular matrix and the production of proteinase inhibitors. Collectively, these biologic activities lead to the accumulation and stabilization of the nascent matrix, which is vital to wound healing. The objective of this study is to investigate production of TGF-${\beta}_1$ in vitro fibroblast culture in the presence of Staphylococcus enterotoxin B(SEB) and/or lipopolysaccharide(LPS) and to elucidate the role of TGF-${\beta}_1$ which may be responsible for wound healing. The fibroblasts were originated from facial dermis and hypertrophic scar in 26 year-old male patient. In the presence of LPS($0.01{\mu}g$, $0.1{\mu}g$, $1.0{\mu}g$), SEB($0.01{\mu}g$, $0.1{\mu}g$, $1.0{\mu}g$) respectively, cells($5{\times}10^3ml$) were cultivated in vitro. At 1, 3, and 5 days after incubation, cells were counted. Also, cells($2.5{\times}10^5ml$) were cultivated in EMEM with LPS(0.01, 0.1 and $1.0{\mu}g$), SEB(0.01, 0.1 and $1.0{\mu}g$) respectively and LPS($0.1{\mu}g$) and SEB($0.1{\mu}g$) in combination for 24, 48, and 72 hours respectively. Culture supernatants were harvested at 1, 2, and 3 days after incubation period and triplicate culture supernatants were pooled and TGF-${\beta}_1$ was assayed in duplicate. The results were as follows. 1. In facial dermal fibroblast induced with SEB and LPS respectively or in combination, the suppression of cell proliferation occurred very significantly at 1 day after incubation, compared with the control. In SEB exposure, the production of TGF-${\beta}_1$ was decreased very significantly at 1 day after incubation, compared with the control. However, in LPS, SEB and LPS exposure, the production of TGF-${\beta}_1$ was increased very significantly at 1 day after incubation, compared with the control. 2. In hypertrophic scar fibroblast induced with SEB and LPS respectively or in combination, the suppression of cell proliferation did not occur at 1 day after incubation, compared with the control. In SEB and LPS exposure in combination, the production of TGF-${\beta}_1$ was increased very significantly at 1 day after incubation, compared with the control. However, the production of TGF-${\beta}_1$ did not occur in SEB and LPS exposure respectively. In conclusion, the concentration of bacterial toxins and the incubation period correlated with cell proliferation and production of TGF-${\beta}_1$ very significantly and both fibroblasts have different phenotype each other in this regard. This data suggest that the significant production of TGF-${\beta}_1$ may develope abnormal wound healing associated with tissue fibroproliferative disorder, such as hypertrophic scar and keloid formation.

  • PDF

Immunohistochemical Study for the Angiogenesis Factors and Vascular Wall Matrix Proteins in Intracranial Aneurysms (뇌동맥류에서 혈관형성 인자와 혈관벽 기질 단백에 대한 면역조직화학적 연구)

  • Kim, Jae Hong;Yim, Man Bin;Lee, Chang Young;Kim, Sang Pyo
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.12
    • /
    • pp.1584-1591
    • /
    • 2000
  • Objective : Until now, it has been little known about the biological mechanisms associated with the genesis, growth, and rupture of intracranial aneurysm. This study was performed to investigate and understand a part of these mechanisms. Materials and Methods : Immunohistochemical stains for angiogenesis growth factors(basic fibroblast growth factor (bFGF) and vascular endothelial growth factor(VEGF)) and selected vascular wall matrix proteins(alpha smooth muscle actin(${\alpha}SMA$) and collagen Type IV) were performed in fixed sections from a normal circle of Willis artery which was taken from the autopsy specimen as a control vessel and 17 aneurysmal wall specimens which was taken during surgical clipping of aneurysms. The staining intensity and distribution of immunoreactivity to angiogenesis growth factors and selected wall matrix proteins in control vessel and aneurysmal wall were examined and compared with each other. The difference of staining intensity according to the size of aneurysm was also investigated. Results : There was no immunoreactivity to bFGF and VEGF in the control vessel. bFGF immunoreactivity was exhibited in 15 of 17 aneurysm specimens around smooth muscle cells within the media of aneurysm. VEGF immunoreactivity was also exhibited in all aneurysm specimens in patches or diffusely affecting all layers of the aneurysmal wall. The degrees of intensity of bFGF and VEGF immunoexpression were proportionate roughly to the size of aneurysm. Strong immunoexpression of both factors were noticed in large aneurysm. A regularly arranged and defined band of immunoreactivity of ${\alpha}SMA$ was noticed in the media of the control vessel, whereas diffuse, faint, irregularly arranged ${\alpha}SMA$ was noticed in the aneurysmal wall. A regularly defined band of collagen Type IV immunoreactivity was also noticed in the subendothelium of the control vessel, whereas diffuse disorganized immunoreactivity of collagen Type IV was noticed in the entire wall of the aneurysm. Conclusion : These results indicate substantial evidences of abnormal expression of angiogenesis factors and changes of selected vascular wall matrix proteins in the wall of intracranial aneurysm. The unbalanced changes of angiogenesis factors and vascular wall matrix proteins in the wall of aneurysm may be one of the biological mechanisms for the growth and rupture of aneurysm.

  • PDF

Antioxidant Activity of Cannabidiol (CBD) and Effect on Its Proliferation in Human Dermal Papilla Cells (칸나비디올(CBD)의 항산화 활성 및 인간 모유두 세포 증식에 미치는 영향)

  • Soo Hyun Kim;Kyu-Sang Sim;Jung Yoon Cheon;Jae-Woong Jang;Su Jin Jeong;Ye Hei Seo;Hye Myoung Ahn;Bong-Geun Song;Gi-Seok Kwon;Jung-Bok Lee
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.234-241
    • /
    • 2023
  • At present, many countries around the world are legalizing cannabis and its products, and research on various treatments using cannabis is being actively conducted. However, the cannabis plant contains other compounds whose biological effects have not yet been established. We investigated the effect of cannabidiol (CBD) on hair growth in human dermal papilla cells (HDPCs). 2,2'-Azino-bis (3-ethylbenzothiazolin-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays were performed to determine the antioxidant activity of CBD. The HDPCs viability of CBD was examined via water-soluble tetrazolium salt (WST-1) assay. The expression of hair-loss-related markers in HDPCs by CBD treatment was analyzed by real-time PCR and western blotting. The DPPH, ABTS radical scavenging activity assay showed that CBD had superior antioxidant activities. In HDPCs, CBD increased cellular proliferation at concentrations without cytotoxicity. It also increased the expressions of fibroblast growth factor 1 (FGF1), fibroblast growth factor 7 (FGF7), vascular endothelial growth factor (VEGF), and insulin-like growth factor (IGF). These results correlated with a decrease in the expression of inhibition-related factors, such as androgen receptor (AR) and transforming growth factor beta 1 (TGF-B1). Moreover, CBD resulted in a significant increase in the phosphorylation of AKT and extracellular signal-regulated kinase (ERK). Therefore, it is suggested that CBD may be a potential remedy for the treatment of alopecia.

Growth Factors and Their Function in Colostrum: A Review (초유에 함유된 성장인자와 기능: 총설)

  • Renchinkhand, Gereltuya;Son, Ji Yoon;Nam, Myoung Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Colostrum, a nutrient-rich fluid produced by female mammals after giving birth, is the specific initial diet of mammalian neonates. Colostrum is important for the nutrition, growth, and development of newborn infants and contributes to the immunologic defense of neonates. It contains immunoglobulins, antimicrobial peptides, such as lactoferrin and lactoperoxidase, and other bioactive molecules, including growth factors, such as IGF (insulin-like growth factor), EGF (epithermal growth factor), $TGF-{\beta}$ (transforming growth factor), and FGF (fibroblast growth factor). Bovine colostrum is a rich source of growth factors, which play a central role in wound healing. The biological activities of colostrum emphasize the relevance of the synergistic activity of growth factors to stimulate keratinocyte proliferation and migration, which are essential for tissue repair. Colostrum increases the expression of early differentiation markers, such as keratin 1 and 10 and involucrin, and late differentiation markers, including loricrin and filaggrin. Additionally, colostrum increases granulation tissue volume in the dermis, suggesting that it has a beneficial effect on wound healing. The therapeutic use of colostrum or individual peptides present in colostrum has a positive and curative influence on various gastrointestinal diseases.

EFFECTS OF BONE MORPHOGENETIC PROTEIN(BMP) ON HUMAN PERIODONTAL LIGAMENT CELLS IN VITRO (Bone Morphogenetic Protein(BMP)이 인체 치주인대 세포의 활성에 미치는 효과)

  • Lee, Seong-Jin;Yoon, Hyung-Jin;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.623-634
    • /
    • 1995
  • Periodontitis is characterized by gingival inflammation and results in periodontal pocket formation with loss of the supporting alveolar bone and connective tissue around the teeth. Therapeutic modalities should therefore aim not only at eliminating the gingival inflammatory process and preventing the progression of periodontal disease but also at reestablishing and regenerating the periodontal tissue previously lost to the disease. To achieve periodontal regeneration, progenitor cells must migrate to the denuded root surface, attach to it, proliferate and mature into an organized and functional fibrous attachment apparatus. Likewise, progenitor bone cells must also migrate, proliferate, and mature in conjunction with the regenerating periodontal ligament. Significant advances have been made during the last decade in understanding the factors controlling the migration, attachment and proliferation of cells. A group of naturally occuring molecules known as polypeptide growth factors in conjunction with certain matrix proteins are key regulators of these biological events. Of these, the fibroblast growth factor(FGF), platelet-derived growth factor(PDGF) , insulin like growth factor(CIGFs), transforming growth factor(TGFs), epidermal growth factor(EGF) and bone morphogenetic growth factor(BMPs) apper to have an important role in periodontal wound healing. The purpose of this study was to determine the effects of BMP on periodontal ligament cells. Human periodontal ligament cells were cultured from extracted tooth for non-periodontal reason. Cultured periodontal ligament cells were treated with BMP. Cellular activities were determined by MTT(3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and ALP(alkaline phosphatase) activity. The results were as follows ; Regardless of cultured time, cellular activities were stimulated by BMP. Also, BMP greatly increased alkaline phosphatase(ALP) in periodontal ligament cells. These results suggest that BMP not only have no cytotoxic effect on periodontal ligament cells, but also have osteogenic stimulatory effect on periodontal ligament cells.

  • PDF

Composition of a Medium for Serum-free Culture of an Adipose-derived Stem Cell Line Established with a Simian Virus 40 T Antigen (Simian virus 40의 T항원 도입으로 수립한 지방유래줄기세포주의 효율적인 무혈청 배양법 및 무혈청 배지조성)

  • Kim, Gyu Bin;Joo, Woo Hong;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1301-1307
    • /
    • 2014
  • Adipose-derived stem cells (ADSCs) are considered promising tools for tissue regeneration. However, ADSCs have very poor proliferation capacity. Therefore, fetal bovine serum (FBS) is generally added to the culture media of ADSCs. As FBS contains many uncharacterized components that may affect cellular functions, methods for serum-free cultures of ADSCs have been widely investigated. In this study, to develop an efficient method for a serum-free culture of ADSC-T, we used an ADSC line established by introducing the simian virus 40 (SV40) T gene into primary ADSCs. We then investigated the effect of amino acids, vitamins, and other components on the growth of ADSC-T. When the ADSC-T cells were plated with DMEM/F12 serum-free medium, the cells did not proliferate, and the mixture of amino acids, vitamins, and B27 supplement did not increase the growth of the cells. However, when the ADSC-T cells were provided with serum-free DMEM/F12 after they had been cultured with serum-supplemented DMEM for 24 h, the cells proliferated, and the vitamins and B27 supplement increased the cell growth. Stem-Pro serum-free medium also appeared to be useful as a suspension culture for the ADSC-T cells. The ADSC-T cells secreted large amounts of proteins of around 70 kDa. Insulin-like growth factor (IGF) and fibroblast growth factor basic (FGF basic) were secreted by ADSC-T in larger amounts in the serum-free culture than in the serum-supplemented culture.

Construction of Chimeric Human Epidermal Growth Factor Containing Short Collagen-Binding Domain Moieties for Use as a Wound Tissue Healing Agent

  • Kim, Dong-Gyun;Kim, Eun-Young;Kim, Yu-Ri;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.119-126
    • /
    • 2015
  • Among the various human growth factors, epidermal growth factor (hEGF, consisting of 53 amino acids) has various effects on cell regeneration, stimulation of proliferation, migration of keratinocytes, formation of granulation tissues, and stimulation of fibroblast motility, which are important for wound healing. Owing to their multiple activities, EGFs are used as pharmaceutical and cosmetic agents. However, their low productivity, limited target specificity, and short half-life inhibit their application as therapeutic agents. To overcome these obstacles, we fused the collagen-binding domain (CBD) of Vibrio mimicus metalloprotease to EGF protein. About 18 or 12 amino acids (aa) (of the 33 total amino acids), which were essential for collagen-binding activity, were combined with the N- and C-termini of EGF. We constructed, expressed, and purified EGF (53 aa)-CBD (18 aa), EGF (53 aa)-CBD (12 aa), CBD (18 aa)-EGF (53 aa), and CBD (12 aa)-EGF (53 aa). These purified recombinant proteins increased the numbers of cells in treated specimens compared with non-treated specimens and control hEGF samples. The collagen-binding activities were also evaluated. Furthermore, CBD-hybridized hEGF induced phosphorylation of the EGF receptor. These results suggested that these fusion proteins could be applicable as small therapeutic agents in wound tissue healing.

Transforming growth factor-β promoted vascular endothelial growth factor release by human lung fibroblasts (인간 폐섬유아세포에서 TGF-β 자극에 의한 VEGF 분비)

  • Park, Sang-Uk;Shin, Joo-Hwa;Shim, Jae-Won;Kim, Deok-Soo;Jung, Hye-Lim;Park, Moon-Soo;Shim, Jung-Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.8
    • /
    • pp.879-885
    • /
    • 2008
  • Purpose : The human lung fibroblast may act as an immunomodulatory cell by providing pro-inflammatory cytokines and chemokines, which are important in airway remodeling. Vascular endothelial growth factor (VEGF) induces mucosal edema and angiogenesis. Thymus and activation regulated chemokine (TARC) induces selective migration of T helper 2 cells. We investigated whether human lung fibroblasts produced VEGF and TARC, and the effects were augmented with the co-culture of fibroblasts and human bronchial smooth muscle cells (HBSMC), and whether dexamethasone can inhibit the proliferation and the release of VEGF in lung fibroblasts. Methods : Human lung fibroblasts were cultured with and without HBSMC, growth-arrested in serum-deprived medium, and pretreated with dexamethasone for 16 hours. After 24-hour stimulation with platelet derived growth factor-BB (PDGF-BB) and/or transforming growth factor-${\beta}$ (TGF-${\beta}$), culture supernatant was harvested for assays of VEGF and TARC. Cell proliferation was assayed using BrdU cell proliferation ELISA kit. Results : 1) The release of VEGF was significantly increased after stimulation with TGF-${\beta}$, and its release was augmented when co-stimulated with PDGF and TGF-${\beta}$. 2) VEGF release induced by PDGF or TGF-${\beta}$ was inhibited by dexamethasone. 3) There was no synergistic effect on the release of VEGF when human lung fibroblasts were co-cultured with HBSMC. 4) Dexamethasone did not suppress human lung fibroblasts proliferations. 5) Neither TGF-${\beta}$ nor PDGF induced TARC release from lung fibroblasts. Conclusion : Human lung fibroblasts may modulate airway remodeling by release of VEGF, but they have no synergistic effects when co-cultured with HBSMC. Dexamethasone suppresses VEGF release, not proliferation of lung fibroblast.

Secretory Production of Recombinant Urokinase Kringle Domain in Pichia pastoris

  • Kim, Hyun-Kyung;Hong, Yong-Kil;Park, Hyo-Eun;Hong, Sung-Hee;Joe, Young-Ae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.591-597
    • /
    • 2003
  • Human urokinase kringle domain, sharing homology with angiostatin kringles, has been shown to be an inhibitor of angiogenesis, which can be used for the treatment of cancer, rheumatoid arthritis, psoriasis, and retinopathy. Here, the expression of the kringle domain of urokinase (UK1) as a secreted protein in high levels is reported. UK1 was expressed in the methylotrophic yeast Pichia pastoris GS115 by fusion of the cDNA spanning from Ser47 to Lys135 to the secretion signal sequence of ${\alpha}-factor$ prepro-peptide. In a flask culture, the secreted UK1 reached about 1 g/l level after 120h of methanol induction and was purified to homogeneity by ion-exchange chromatography. Amino-terminal sequencing of the purified UK1 revealed that it was cleaved at the Ste13 signal cleavage site. The molecular mass of UK1 was determined to be 10,297.01 Da. It was also confirmed that the purified UK1 inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor, or epidermal growth factor, in a dose-dependent manner. These results suggest that a P. pastoris sytem can be employed to obtain large amounts of soluble and active UK1.

Effect of Single Growth Factor and Growth Factor Combinations on Differentiation of Neural Stem Cells

  • Choi, Kyung-Chul;Yoo, Do-Sung;Cho, Kyung-Sock;Huh, Pil-Woo;Kim, Dal-Soo;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.6
    • /
    • pp.375-381
    • /
    • 2008
  • Objective : The effects on neural proliferation and differentiation of neural stem cells (NSC) of basic fibroblast growth factor-2 (bFGF). insulin growth factor-I (IGF-I). brain-derived neurotrophic factor (BDNF). and nerve growth factor (NGF) were assessed. Also, following combinations of various factors were investigated : bFGF+IGF-I, bFGF+BDNF, bFGF+NGF, IGF-I+BDNF, IGF-I+NGF, and BDNF+NGF. Methods : Isolated NSC of Fisher 344 rats were cultured with individual growth factors, combinations of factors, and no growth factor (control) for 14 days. A proportion of neurons was analyzed using $\beta$-tubulin III and NeuN as neural markers. Results : Neural differentiations in the presence of individual growth factors for $\beta$-tubulin III-positive cells were : BDNF, 35.3%; IGF-I, 30.9%; bFGF, 18.1%; and NGF, 15.1%, and for NeuN-positive cells was : BDNF, 34.3%; bFGF, 32.2%; IGF-I, 26.6%; and NGF, 24.9%. However, neural differentiations in the absence of growth factor was only 2.6% for $\beta$-tubulin III and 3.1% for NeuN. For $\beta$-tubulin III-positive cells, neural differentiations were evident for the growth factor combinations as follows : bFGF+IGF-I, 73.1 %; bFGF+NGF, 65.4%; bFGF+BDNF, 58.7%; BDNF+IGF-I, 52.2%; NGF+IGF-I, 40.6%; and BDNF+NGF, 40.0%. For NeuN-positive cells : bFGF+IGF-I, 81.9%; bFGF+NGF, 63.5%; bFGF+BDNF, 62.8%; NGF+IGF-I, 62.3%; BDNF+NGF, 56.3%; and BDNF+IGF-I, 46.0%. Significant differences in neural differentiation were evident for single growth factor and combination of growth factors respectively (p<0.05). Conclusion : Combinations of growth factors have an additive effect on neural differentiation. The most prominent neural differentiation results from growth factor combinations involving bFGF and IGF-I. These findings suggest that the combination of a mitogenic action of bFGF and post-mitotic differentiation action of IGF-I synergistically affects neural proliferation and NSC differentiation.