DOI QR코드

DOI QR Code

Transforming growth factor-β promoted vascular endothelial growth factor release by human lung fibroblasts

인간 폐섬유아세포에서 TGF-β 자극에 의한 VEGF 분비

  • Park, Sang-Uk (Department of Pediatrics, Sungkyunkwan University School of Medicine) ;
  • Shin, Joo-Hwa (Department of Pediatrics, Sungkyunkwan University School of Medicine) ;
  • Shim, Jae-Won (Department of Pediatrics, Sungkyunkwan University School of Medicine) ;
  • Kim, Deok-Soo (Department of Pediatrics, Sungkyunkwan University School of Medicine) ;
  • Jung, Hye-Lim (Department of Pediatrics, Sungkyunkwan University School of Medicine) ;
  • Park, Moon-Soo (Department of Pediatrics, Sungkyunkwan University School of Medicine) ;
  • Shim, Jung-Yeon (Department of Pediatrics, Sungkyunkwan University School of Medicine)
  • 박상욱 (성균관대학교 의과대학 강북삼성병원 소아청소년과) ;
  • 신주화 (성균관대학교 의과대학 강북삼성병원 소아청소년과) ;
  • 심재원 (성균관대학교 의과대학 강북삼성병원 소아청소년과) ;
  • 김덕수 (성균관대학교 의과대학 강북삼성병원 소아청소년과) ;
  • 정혜림 (성균관대학교 의과대학 강북삼성병원 소아청소년과) ;
  • 박문수 (성균관대학교 의과대학 강북삼성병원 소아청소년과) ;
  • 심정연 (성균관대학교 의과대학 강북삼성병원 소아청소년과)
  • Received : 2008.01.02
  • Accepted : 2008.07.21
  • Published : 2008.08.15

Abstract

Purpose : The human lung fibroblast may act as an immunomodulatory cell by providing pro-inflammatory cytokines and chemokines, which are important in airway remodeling. Vascular endothelial growth factor (VEGF) induces mucosal edema and angiogenesis. Thymus and activation regulated chemokine (TARC) induces selective migration of T helper 2 cells. We investigated whether human lung fibroblasts produced VEGF and TARC, and the effects were augmented with the co-culture of fibroblasts and human bronchial smooth muscle cells (HBSMC), and whether dexamethasone can inhibit the proliferation and the release of VEGF in lung fibroblasts. Methods : Human lung fibroblasts were cultured with and without HBSMC, growth-arrested in serum-deprived medium, and pretreated with dexamethasone for 16 hours. After 24-hour stimulation with platelet derived growth factor-BB (PDGF-BB) and/or transforming growth factor-${\beta}$ (TGF-${\beta}$), culture supernatant was harvested for assays of VEGF and TARC. Cell proliferation was assayed using BrdU cell proliferation ELISA kit. Results : 1) The release of VEGF was significantly increased after stimulation with TGF-${\beta}$, and its release was augmented when co-stimulated with PDGF and TGF-${\beta}$. 2) VEGF release induced by PDGF or TGF-${\beta}$ was inhibited by dexamethasone. 3) There was no synergistic effect on the release of VEGF when human lung fibroblasts were co-cultured with HBSMC. 4) Dexamethasone did not suppress human lung fibroblasts proliferations. 5) Neither TGF-${\beta}$ nor PDGF induced TARC release from lung fibroblasts. Conclusion : Human lung fibroblasts may modulate airway remodeling by release of VEGF, but they have no synergistic effects when co-cultured with HBSMC. Dexamethasone suppresses VEGF release, not proliferation of lung fibroblast.

목 적 : 폐섬유아세포는 예전에는 기도의 구조적 세포로만 알려져 왔으나, 최근에는 천식에서 기관지 운동의 톤을 조절할 뿐만 아니라 기도의 면역조절과 기도 개형에서 중요한 역할을 하는 것으로 밝혀지고 있다. VEGF는 혈관 내피세포에서 강력한 작용을 하는 다기능적 사이토카인으로서, 상피내 세포의 세포분열을 유도하고, 상피세포의 투과도를 증가시키며, 상피세포의 이동을 향상시키는 역할을 하는 것으로 알려져 있다. TARC는 Th2 세포의 선택적 이동을 유도하는 케모카인으로 알려져 있다. 본 연구에서는 PDGF와 TGF-${\beta}$로 자극시킨 인간 폐섬유아세포에서 VEGF와 TARC가 생성되는지와 dexamethasone이 폐섬유아세포에서 VEGF의 분비를 억제하는지를 알아보고자 하였다. 또한 폐섬유아세포와 기관지 평활근 세포와 함께 배양했을 때 VEGF 생성에 미치는 효과를 단독배양 시와 비교하였다. 방 법 : 폐섬유아세포와 인간 기관지 평활근세포를 각각 혹은 함께 배양한 뒤 48시간동안 무혈청 배지에서 성장을 정지시킨 후 TGF-${\beta}$ (10 ng/mL)와 PDGF (20 ng/mL)로 자극하였다. 자극 후의 세포 증식 반응과 배양액 상층액의 VEGF, TARC 농도를 측정하여 dexamethasone ($10^{-6}M$)으로 전처치 후 자극한 것과 비교하였다. 결 과 : PDGF와 TGF-${\beta}$로 자극하였을 경우 폐섬유아세포에서 VEGF 분비가 의미있게 증가하였고, 특히 PDGF와 TGF-${\beta}$로 함께 자극하였을 경우 더욱 의미있는 상승을 보였다. Dexamethasone은 폐섬유아세포의 VEGF 분비를 PDGF로 자극한 경우와 PDGF, TGF-${\beta}$ 같이 자극한 경우 모두에서 억제하였다. 인간 기관지 평활근 세포와 폐섬유아세포를 혼합 배양했을 때 VEGF 분비에는 상승적인 효과가 없었다. Dexamethasone은 폐섬유아세포 증식을 억제시키지 않았다. 폐섬유아세포를 PDGF와 TGF-${\beta}$로 자극했을 때 TARC는 분비되지 않았다. 결 론 : 폐섬유아세포는 VEGF 분비를 통해 기도 개형에 관여하며, 기관지 평활근 세포와 함께 배양해도 VEGF 분비에 상승 효과는 없다. Dexamethasone은 VEGF 분비를 억제하였으나 폐섬유아세포의 증식을 억제하지는 못하였다.

Keywords

References

  1. Vignola AM, Mirabella F, Costanzo G, Di Giorgi R, Gjomar kaj M, Bellia V, et al. Airway remodeling in asthma. Chest 2003;123:417-22 https://doi.org/10.1378/chest.123.3_suppl.417S
  2. Woodruff PG, Fahy JV. Airway remodeling in asthma. Semin Respir Crit Care Med 2002;23:361-7 https://doi.org/10.1055/s-2002-34331
  3. Kunzmann S, Schmidt-Weber C, Zingg JM, Azzi A, Kramer BW, Blaser K, et al. Connective tissue growth factor expression is regulated by histamine in lung fibroblasts: potential role of histamine in airway remodeling. J Allergy Clin Immunol 2007;119:1398-407 https://doi.org/10.1016/j.jaci.2007.02.018
  4. Folkman J. Klagsbrun M. Angiogenic factors. Science 1987;235:442-7 https://doi.org/10.1126/science.2432664
  5. Leung DW, Cachianes G, Kuang WJ. Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306-9 https://doi.org/10.1126/science.2479986
  6. Anan K, Morisaki T, Katano M, Ikubo A, Kitsuki H, Uchiyama A, et al. Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer. Surgery 1996;119:333-9 https://doi.org/10.1016/S0039-6060(96)80120-6
  7. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18:4-25 https://doi.org/10.1210/er.18.1.4
  8. Lee KS, Min KH, Kim SR, Park SJ. Park HS, Jin GY, et al. Vascular endothelial growth factor modulates matrix metalloproteinase-9 expression in asthma. Am J Respir Crit Care Med 2006;174:161-70 https://doi.org/10.1164/rccm.200510-1558OC
  9. Makinde T, Murphy RF, Agrawal DK. The regulatory role of TGF-beta in airway remodeling in asthma. Immunol Cell Biol 2007;85:348-56 https://doi.org/10.1038/sj.icb.7100044
  10. Wen FQ, Liu X, Manda W, Terasaki Y, Kobayashi T, Abe S, et al. TH2 Cytokine-enhanced and TGF-beta-enhanced vascular endothelial growth factor production by cultured human airway smooth muscle cells is attenuated by IFN-gamma and corticosteroids. J Allergy Clin Immunol 2003;111:1307-18 https://doi.org/10.1067/mai.2003.1455
  11. Yoo MH, Shim JY, Seo BG, Kim DS, Shim JW, jung HL, et al. Dexamethasone attenuates PDGF-and TGF-beta-enhanced Vascular endothelial growth factor production in cultured human bronchial smooth muscle cells. Pediatr Allergy Respir Dis (Korea) 2006;16:142-9
  12. Kumagai N, Fukuda K, Nishida T. Synergistic effect of TNF- $\alpha$ and IL-4 on the expression of thymus-and activation-regulated chemokine in human corneal fibroblasts. Biochem Biophys Res Commun 2000;279:1-5 https://doi.org/10.1006/bbrc.2000.3890
  13. Heijink IH, Marcel Kies P, van Oosterhout AJ. Postma DS, Kauffman HF, Vellenga E. Der p, IL-4, and TGF-beta cooperatively induce EGFR-dependent TARC expression in airway epithelium. Am J Respir Cell Mol Biol 2007;36:351-9 https://doi.org/10.1165/rcmb.2006-0160OC
  14. Fukuda K, Fujitsu Y, Seki K, Kumagai N, Nishida T. Differential expression of thymus-and activation-regulated chemokine (CCLI7) and macrophage-derived chemokine (CCL22) by human fibroblasts from cornea, skin, and lung. J Allergy Clin Immunol 2003;111:520-6 https://doi.org/10.1067/mai.2003.59
  15. Abraham DI. Eckes B, Rajkumar V, Krieg T. New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep 2007;9:136-43 https://doi.org/10.1007/s11926-007-0008-z
  16. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007;127:526-37 https://doi.org/10.1038/sj.jid.5700613
  17. Wicks I. Haitchi HM, Holgate ST, Davies DE, Powell RM. Enhanced upregulation of smooth muscle related transcripts by TGF beta2 in asthmatic (myo) fibroblasts. Thorax 2006;61:313-9 https://doi.org/10.1136/thx.2005.050005
  18. Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 2005;13:7-12 https://doi.org/10.1111/j.1067-1927.2005.130102.x
  19. Ross R, Bowen-Pope DF, Raines EW. Platelet-derived growth factor: its potential roles in wound healing, atherosclerosis, neoplasia, and growth and development. Ciba Found Symp 1985;116:98-112
  20. Raines EW, Ross R. Platelet-derived growth factor. I. High yield purification and evidence for multiple forms. J BioI Chem 1982;257:5154-60
  21. Malmstrom J. Tufvesson E, Lofdahl CG, Hansson L, Marko¬Varga G, Westergren-Thorsson G. Activation of platelet-derived growth factor pathway in human asthmatic pulmonary-derived mesenchymal cells. Electrophoresis 2003;24:276-85 https://doi.org/10.1002/elps.200390024
  22. Yamashita N, Sekine K, Miyasaka T, Kawashima R, Nakajima Y, Nakano J. et al. Platelet-derived growth factor is involved in the augmentation of airway responsiveness through remodeling of airways in diesel exhaust particulate-treated mice. J Allergy Clin Immunol 2001;107:135-42 https://doi.org/10.1067/mai.2001.111433
  23. Redington AE, Madden J. Frew AJ. Djukanovic R, Roche WR, Holgate ST, et al. Transforming growth factor-beta 1 in asthma. Measurement in bronchoalveolar lavage fluid. Am J Respir Crit Care Med 1997;156:642-7 https://doi.org/10.1164/ajrccm.156.2.9605065
  24. Minshall EM, Leung DY, Martin RJ, Song YL, Cameron L, Ernst P, et al. Eosinophil-associated TGF-beta1 mRNA expression and airways fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 1997;17:326-33 https://doi.org/10.1165/ajrcmb.17.3.2733
  25. Ohno I, Nitta Y, Yamauchi K, Hoshi H, Honma M, Woolley K, et al. Transforming growth factor beta 1 (TGF beta 1) gene expression by eosinophils in asthmatic airway inflammation. Am J Respir Cell Mol Biol 1996;15:404-9 https://doi.org/10.1165/ajrcmb.15.3.8810646
  26. Elobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000;342:1350-8 https://doi.org/10.1056/NEJM200005043421807
  27. Hansen G, McIntire JJ, Yeung VP, Berry G, Thorbecke GJ, Chen L, et al. CD4(+) T helper cells engineered to produce latent TGF-beta1 reverse allergen-induced airway hyperreactivity and inflammation. J Clin Invest 2000;105:61-70 https://doi.org/10.1172/JCI7589
  28. Nakao A. Is TGF-beta1 the key to suppression of human asthma? Trends Immunol 2001;22:115-8 https://doi.org/10.1016/S1471-4906(00)01827-5
  29. Kraft M, Lewis C, Pham D, Chu HW. IL-4, IL-13, and dexamethasone augment fibroblast proliferation in asthma. J Allergy Clin Immunol 2001;107:602-6 https://doi.org/10.1067/mai.2001.113760
  30. Fouty B, Moss T, Solodushko V, Kraft M. Dexamethasone can stimulate G1-S phase transition in human airway fibroblasts in asthma. Eur Respir J 2006;27:1160-7 https://doi.org/10.1183/09031936.06.00078605
  31. Panettieri RA Jr, Kotlikoff MI, Gerthoffer WT, Hershenson MB, Woodruff PG, Hall IF, et al. Airway smooth muscle in bronchial tone, inflammation, and remodelling: basic knowledge to clinical relevance. Am J Respir Crit Care Med 2008;177:248-52 https://doi.org/10.1164/rccm.200708-1217PP
  32. Hvizdos KM, Jarvis B. Budesonide inhalation suspension: a review of its use in infants, children and adults with inflammatory respiratory disorders. Drugs 2000;60:1141-78 https://doi.org/10.2165/00003495-200060050-00010
  33. Faffe DS, Flynt L, Bourgeois K, Panettieri RA Jr, Shore SA. Interleukin-13 and interleukin-4 induce vascular endothelial growth factor release from airway smooth muscle cells: role of vascular endothelial growth factor genotype. Am J Respir Cell Mol Biol 2006;34:213-8 https://doi.org/10.1165/rcmb.2005-0147OC
  34. Cucina A, Borrelli V, Randone B, Coluccia P, Sapienza P, Cavallaro A. Vascular endothelial growth factor increases the migration and proliferation of smooth muscle cells through the mediation of growth factors released by endothelial cells. J Surg Res 2003;109:16-23 https://doi.org/10.1016/S0022-4804(02)00042-2