• Title/Summary/Keyword: Fibroblast cells

Search Result 1,091, Processing Time 0.028 seconds

The Effect of Insulin-Like Growth Factor-I(IGF-I) and IGF Binding Protein-3(IGFBP-3) on Cellular Proliferation in Mouse 3T3 Fibroblast Cells (마우스 섬유아세포(3T3 fibroblast cells)에서 Insulin-like Growth Factor-I(IGF-I) 및 IGF Binding Protein-3 (IGFBP-3)이 세포증식에 미치는 영향)

  • Cho, Chul-Ho;Kwak, Seung-Min;Moon, Tae-Hun;Cho, Jae-Hwa;Ryu, Jeong-Seon;Lee, Hyong-Lyeol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.5
    • /
    • pp.618-628
    • /
    • 1999
  • Background: Cell growth is a balance between cell proliferation and cell death. Insulin-like growth factor-I(IGF-I), which binds IGF-I receptor(IGF-IR), mediates cellular proliferation as a potent mitogen. IGF binding protein-3(IGFBP-3) as a circulating major IGFBP can inhibit or enhance the effects of IGF-I on cellular growth by binding IGFs. Methods: We investigated the expressions of mRNA of IGF-I and IGF-IR by northern blot and phosphorylation of IGF-IR with the treatment of IGF-I by western blot in 3T3 fibroblast cells. The cellular proliferations of 3T3 cells with the treatments of IGF-I were evaluated using $^3H$-thymidine incorporation and MTT assay. Also to observe the effect of IGFBP-3 on cellular proliferation, 3T3 cells were treated with anti-IGFBP-3 and ${\alpha}IR_3$(monoclonal antibody to IGF-IR) alone or in combination. Results: Our results demonstrated that 3T3 cells showed mRNA expressions of IGF-I and IGF-IR and the IGF-I increased phosphorylation of IGF-IR. The treatments of 3T3 cells with IGF-I increased cellular proliferation in 5 % and 1 % seruma-containing media, not in serum-free media. The addition of anti-IGFBP-3 to neutralize IGFBP-3 showed 2-fold increase of cellular proliferation, and also co-incubation of anti-IGFBP-3 and ${\alpha}IR_3$ together showed similar increase of cellular proliferation in 3T3 cells. Interestingly, when the cells were pretreated with ${\alpha}IR_3$ for 4 hr, prior to the simultaneous addition of ${\alpha}IR_3$ and anti-IGFBP-3, anti-IGFBP-3-mediated cellular proliferation was decreased to control level. All of these results suggest that free IGF-I released from IGF-I/IGFBP-3 complex would be involved in the cellular proliferation. Conclusion: IGF-I is a mitogen through the activation of IGF-IR in 3T3 cells, and IGFBP-3 could be a potent inhibitor for IGF-I action by binding IGF-I.

  • PDF

In Vitro Development of Interspecies Nuclear Transfer Embryos using Porcine Oocytes with Goat and Rabbit Somatic Cells

  • Quan, Yan Shi;Naruse, Kenji;Choi, Su-Min;Kim, Myung-Youn;Han, Rong-Xun;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.249-253
    • /
    • 2008
  • Interspecies somatic cell nuclear transfer (iSCNT) is a valuable tool for studying the interactions between an oocyte and somatic nucleus. The object of this study was to investigate the developmental competence of in vitro-matured porcine oocytes after transfer of the somatic cell nuclei of 2 different species (goat and rabbit). Porcine cumulus oocytes were obtained from the follicles of ovaries and matured in TCM-199. The reconstructed embryos were electrically fused with 2 DC pulses of 1.1kV/cm for $30{\mu}s$ 0.3M mannitol medium. The activated cloned embryos were cultured in porcine zygote medium-3 (PZM-3), mSOF or RDH medium for 7 days. The blastocyst formation rate of the embryos reconstructed from goat or rabbit fetal fibroblasts was significantly lower than that of the embryos reconstructed from porcine fetal fibroblast cells. However, a significantly higher number of embryos reconstructed from goat or rabbit fetal fibroblasts cultured in mSOF or RDH, respectively, developed to the morular stage than those cultured in PZM-3. These results suggest that goat and bovine fetal fibroblasts were less efficacious than porcine-porcine cloned embryos and that culture condition could be an important factor in iSCNT. The lower developmental potential of goat-porcine and porcine-bovine cloned embryos may be due to incompatibility between the porcine oocyte cytoplasm and goat and bovine somatic nuclei.

Cytotoxicity on Fibroblast Cells of Several Herbicides (몇 가지 제초제가 NIH 3T3 섬유모세포에 끼치는 세포독성)

  • 임요섭;박영민;정연규;한두석;한성수
    • Toxicological Research
    • /
    • v.16 no.2
    • /
    • pp.173-178
    • /
    • 2000
  • This study was carried out to investigate cytotoxicity of several herbicides (Bentazone, Butachlor. Paraquat and Ethalfluralin) in cultured mouse NIH 3T3 fibroblasts. Tetrazolium (MTT), neutral red (NR) and sulforhodamine protein B (SRB) of the colorimetric assays were performed to evaluate the cytotoxicity on cell organelles. 2 x 10$^4$cell/$m\ell$ of NIH 3T3 fibroblast in each well of 24 multidish were cultured. After 24 hours, the cells were treated with solution (1, 25, 50 or 100 $\mu$M) of each herbicide. After the NIH 3T3 fibroblasts of all groups were cultured in the same condition for 48 hours, MTT, NR and SRB assays were performed to evaluate the cytotoxicity. The light microscopic study was carried out to examine morphological changes of cultured NIH 3T3 fibroblasts. The MTT$_{50}$ of Bentazone, Butachlor, Paraquat and Ethalfluralin were 1560.97 $\mu$M, 56.15 $\mu$M, 3138.81 $\mu$M and 1301.82 $\mu$M, respectively. The NR$_{50}$ of Bentazone, Butachlor. Paraquat and Ethalfluralin were 1763.93 $\mu$M, 45.98 $\mu$M, 1030.85 $\mu$M and 1808.29 $\mu$M, respectively. The SRB$_{50}$ of Bentazone, Butachlor. Paraquat and Ethalfluralin were 1913.38 $\mu$M, 65.30 $\mu$M, 1860.73 $\mu$M and 1086.93 $\mu$M, respectively. The morphological changes of NIH 3T3 fibroblasts showed severe degeneration in Butachlor 50 $\mu$M and 100 $\mu$M concentrations. These results indicate that Butachlor has high cytotoxicity, Bentazone, Paraquat and Ethalfluralin very weak cytotoxicity against NIH 3T3 fibroblasts.lasts.

  • PDF

Effect of ${\beta}$-glucan Originated from Aureobasidium on the Dermal Wound Repair in Vitro Model (생체외 모델에서 아우레오바지디움 유래 베타 글루칸이 피부창상 치유에 미치는 영향)

  • Lee, Jung-Woo;Kwon, Young-Sam;Jang, Kwang-Ho
    • Journal of Veterinary Clinics
    • /
    • v.30 no.6
    • /
    • pp.403-408
    • /
    • 2013
  • The objective of the present study is to detect the effect of ${\beta}$-glucan originated from Aureobasidium on the proliferation and collagen production in human dermal fibroblast cells with wound repopulation in vitro. The proliferative effects were assessed using a MTT assay as well as cell counts at 24 and 48 hr after treatment. Hydroxyproline was measured as an index of procollagen production with reverse-phase high pressure liquid chromatography. Oncostatin M was used as a reference agent. In glucagon treated group, dose-dependent and significant increase of optical density or fibroblast cell numbers was demonstrated, when compared with those of control from 0.1 mg/ml concentration. In addition, the numbers of cells which had migrated into the wound defects were more significantly and dose-dependently increased than those of non-treated control. However, no meaningful effects on the procollagen production were observed.

Anti-Skin Aging Effect of Syriacusins from Hibiscus Syriacus on Ultraviolet-Irradiated Human Dermal Fibroblast Cells

  • Ryoo, In-Ja;Moon, Eun-Yi;Kim, Young-Hee;Lee, Ik-Soo;Choo, Soo-Jin;Bae, Ki-Hwan;Yoo, Ick-Dong
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.300-307
    • /
    • 2010
  • Photosensitized peroxidation of membrane lipids has been implicated in skin pathologies such as phototoxicity and premature aging. We have previously reported that syriacusin compounds isolated from Hibiscus Syriacus inhibited lipid peroxidation. Here, we investigated whether syriacusins could be effective inhibitor to skin aging using ultraviolet-irradiated human dermal fibroblast cells (HDFCs). Syriacusins A, B, and C inhibit the activity of human neutrophil elastase (HNE), a serine protease to degrade extracellular matrix (ECM) proteins including elastin, with $IC_{50}s$ of 8.0, 5.2, and $6.1\;{\mu}M$, respectively. No changes in cell viability were detected by syriacusins A and B in UV-B ($10\;mJ/cm^2$) irradiated HDFCs. Matrix metallo-proteinase (MMP)-1 expression in HDFCs was increased by UV-B irradiation. MMP-1 expression in UV-B irradiated HDFCs was decreased by $10\;{\mu}M$ and $20\;{\mu}M$ syriacusin A to 50% and 20% of untreated control, respectively. Syriacusin B treated with $20\;{\mu}M$ reduced MMP-1 expression in UV-B irradiated HDFCs to 60% of untreated control. Syriacusin A also inhibited MMP-2 expression accompanying the increase of type-I pro-collagen in UV-B irradiated HDFCs. These results demonstrate that syriacusin A could be a more effective compound to inhibit skin aging caused by UV irradiation. It suggests that syriacusins A and B might be developed as possible agents to treat or prevent skin aging.

Wound Healing Activity of Gamma-Aminobutyric Acid (GABA) in Rats

  • Han, Dong-Oh;Kim, Hee-Young;Lee, Hye-Jung;Shim, In-Sop;Hahm, Dae-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1661-1669
    • /
    • 2007
  • Gamma-aminobutyric acid (GABA) is a non-protein amino acid. It is well known for its role as an inhibitory neurotransmitter of developing and operating nervous systems in brains. In this study, a novel function of GABA in the healing process of cutaneous wounds was presented regarding anti-inflammation and fibroblast cell proliferation. The cell proliferation activity of GABA was verified through an MTT assay using murine fibroblast NIH3T3 cells. It was observed that GABA significantly inhibited the mRNA expression of iNOS, IL-$1{\beta}$, and TNF-${\alpha}$ in LPS-stimulated RAW 264.7 cells. To evaluate in vivo activity of GABA in wound healing, excisional open wounds were made on the dorsal sides of Sprague-Dawley rats under anesthesia, and the healing of the wounds was apparently assessed. The molecular aspects of the healing process were also investigated by hematoxylineosin staining of the healed skin, displaying the degrees of re-epithelialization and linear alignment of the granulation tissue, and immunostaining and RT-PCR analyses of fibroblast growth factor and platelet-derived growth factor, implying extracellular matrix synthesis and remodeling of the skin. The GABA treatment was effective to accelerate the healing process by suppressing inflammation and stimulating re-epithelialization, compared with the epidermal growth factor treatment. The healing effect of GABA was remarkable at the early stage of wound healing, which resulted in significant reduction of the whole healing period.

THE EFFECTS OF GINGIVAL FIBROBLAST ON THE MINERALIZATION OF THE RAT BONE MARROW STROMAL CELL (백서 골수세포의 석회화 과정에 미치는 치은 섬유아세포의 영향)

  • Kim, Seuk-Yong;Kwon, Young-Hyuk;Park, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.210-221
    • /
    • 1995
  • The purpose of this study was performed to investigate the mineralization and differentiation of osteobalsts for bone regeneration in vitro and the effect of rate of the composition in periodontal cells on mineralization. For this study, healthy gingival tissues were surgically obtained from the patients during 1st premolar extraction for the purposes of orthodontic treament. Gingival tissue was washed several time with Phosphate buffered saline contained high concentration of antibiotics and antifungal agent, and cultured in Dulbecco's Modified Eagle's Medium(DMEM, Gibco, U.S.A.). Every cell were cultured in state at $37^{\circ}C$, 100% of humidity, 5% of $CO_2$ incubator. Bone marrow stromal cells were isolated from 5-clay-old rat femur with using medium irrigation mathod by syringe. Cell suspension medium were centrifuged at 1500 rpm for 5 min and then cultured in the petri dish. Two kinds of cell were freezed and stocked in the liquid nitrogen tank until experiment. Cell were incubated into the 24 multi-well plate with $5{\times}10^4$cell/well of medium at $37^{\circ}C$, 100% of humidity 5% $CO_2$ incubator for 24 hours. After discarded of the supernatent of medium, O.5ml of medium were reapplied and incubated. And counted the number of cell using the hemocytometer and inverted light microscope. We have measured the number of mineralized nodule with using Alizarin red S. staining in microscope. Furthermore every cell were observed the morphological change between every rate of co-culture of the two kinds of cell. The results were as follows; The rate of proliferation of co-culture cell revealed high rate tendency compared the bone marrow stromal cell only and low growth rate to compared with gingival fibroblast only. The tendency of formation of the mineralized nodule were observed dose-depend pattern of bone marrow stromal cell. It is concluded that the gingival fibroblast may inhibit the formation of mineralized nodule in the culture of the bone marrow stromal cell.

  • PDF

Interaction between Leptospiral Lipopolysaccharide and Toll-like Receptor 2 in Pig Fibroblast Cell Line, and Inhibitory Effect of Antibody against Leptospiral Lipopolysaccharide on Interaction

  • Guo, Yijie;Fukuda, Tomokazu;Nakamura, Shuichi;Bai, Lanlan;Xu, Jun;Kuroda, Kengo;Tomioka, Rintaro;Yoneyama, Hiroshi;Isogai, Emiko
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.273-279
    • /
    • 2015
  • Leptospiral lipopolysaccharide (L-LPS) has shown potency in activating toll-like receptor 2 (TLR2) in pig fibroblasts (PEFs_NCC1), and causes the expression of proinflammatory cytokines. However, the stimulation by L-LPS was weak eliciting the function of TLR2 sufficiently in pig innate immunity responses during Leptospira infection. In this study, the immune response of pig embryonic fibroblast cell line (PEFs_SV40) was investigated and was found to be the high immune response, thus TLR2 is the predominate receptor of L-LPS in pig cells. Further, we found a strategy using the antibody against L-LPS, to prevent L-LPS interaction with TLR2 in pig cells which could impact on immune activation.