• Title/Summary/Keyword: Fibres

검색결과 276건 처리시간 0.024초

East Meets West : The Introduction of Cotton Fibres in Ancient Greece

  • Margariti, Christina
    • The International Journal of Costume Culture
    • /
    • 제13권1호
    • /
    • pp.23-25
    • /
    • 2010
  • Archaeological evidence shows that cotton fibres of the genus Gossypium were first used for textile production at Mehrgarh, Pakistan in the Neolithic period ($6^{th}$ millenium BC). Eventually the cotton plant and textiles found their way to Egypt and through there, to Greece. However, the chronological origins of the cultivation and/or use of cotton fibres in textile production in ancient Greece are ambiguous. The main sources of information are ancient written texts and excavated textile finds. Both indicate that the introduction of cotton in Greece can be placed in the mid-first millenium BC. However, it is not clear whether the cultivation of the plant and consequently the production of cotton textiles was established in that period or whether another cotton species was produced and used locally in Greece or whether isolated examples of cotton textiles had been imported in Greece before the cotton plant. A more comprehensive analytical study of surviving textile finds coupled with archaeological research for plant production and cultivation would provide the answer to these questions.

  • PDF

The Effect of Thermal Characteristic of Organic Fibres on the Spalling of High Strength Concrete (유기섬유의 열적 특성이 고강도 콘크리트 폭열에 미치는 영향)

  • Park Chan Kyu;Lee Seung Hoon;Kim Cyu Dong;Shin Yu Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.37-40
    • /
    • 2005
  • Recently, in order to reduce the spalling of high strength concrete under fire, the addition of organic fibres to high strength concrete has been investigated. In this study, the effect of thermal characteristic of organic fibres on the spalling of high strength concrete was experimantally investigated. Two types of fibre, polypropylene(PP) and polyvinyl alcohol(PVA) fibres, were selected, and the strength level of concrete was correnponding to the design strength of 80MPa. As a result, it appears that when the remaining ratios(by weight) of fibre at 300$^{circ}C$ and 350$^{circ}C$ are less than 80$\%$ and 50$\%$, respectively, the spalling of high strength concrete is prevented.

  • PDF

Comparative investigation on fatigue and moisture absorption behavior of hemp and Jute fibre polymer composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.729-736
    • /
    • 2022
  • Earth is facing a serious problem of pollution and scarcity of energy sources. The synthetic fibers used in automobile and Aerospace manufacturing sectors are non-renewable and harmful to environment. International Agency such as FAA and SAE is forcing for green fuel, green materials and structures. Further exploration is much needed to understand its potential in structural applications. In the current study, hemp and Jute fibre based composites were developed and tested for assessing their suitability for possible applications in automobile and aerospace sectors. Composites were undergone tensile test, water absorption test, and fatigue analysis to understand its behavior under various loading conditions. The finite element analysis has been carried out to understand the fatigue behaviour of composites. The results revealed that the usage of hemp and jute fibre reinforced composites can improve mechanical properties and have shown a viable alternative to replace synthetic fibres such as glass fibres for specific applications. Hemp reinforced bio-composites have shown better performance as compared to Jute reinforced bio-composites while water resistance characteristics for hemp is poorer to jute fibres.

Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study

  • Mohammed M., Attia;Abd Al-Kader A., Al Sayed;Bassam A., Tayeh;Shymaa M.M., Shawky
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.355-368
    • /
    • 2022
  • This paper investigates the impact of length and volume fractions (VFs) of banana fibres (BFs) on the mechanical and physical properties of concrete. The mechanical properties were compressive strength, splitting tensile, flexural strength, and bond stress, while the physical properties were unit weight and absorption. The slump test was used to determine workability. The concrete's behaviour with BFs was studied using scanning electron microscopy. Experimental work of concrete mixtures with BFs of various lengths (12 mm, 25 mm, and 35 mm) and VFs (0%, 0.5%, 1.0%, and 1.5%) were carried out. The samples did not indicate any agglomeration of fibres or heterogeneity during mixing. The addition of BFs to concrete with VFs of up to 1.50% for all fibre lengths have a significant impact on mechanical properties, also the longer fibres performed better than shorter ones at all volume fractions of BFs. The mix10, which contain BFs with VFs 1.5% and length 35 mm, demonstrated the highest mechanical properties. The compressive strength, splitting tensile, flexural strength, and bond stress of the mix10 were 37.71 MPa, 4.27 Mpa, 6.12 MPa, and 6.75 MPa, an increase of 7.37%, 20.96%, 24.13%, and 11.2% over the reference concrete, which was 35.12 MPa, 3.53 MPa, 4.93 MPa, and 6.07 MP, respectively. The absorption is increased for all lengths by increasing the VFs up to 1.5%. Longer fibres have lower absorption, while shorter fibres have higher absorption. The mix8 had the highest absorption of 4.52%, compared to 3.12% for the control mix. Furthermore, the microstructure of concrete was improved through improved bonding between the fibres and the matrix, which resulted in improved mechanical properties of the composite.

Two New Euryspongian Sponges (Dictyoceratida: Dysideidae) from Korea

  • Lee, Kyung-Jin;Sim, Chung-Ja
    • Animal Systematics, Evolution and Diversity
    • /
    • 제23권1호
    • /
    • pp.35-38
    • /
    • 2007
  • Two new sponges, Euryspongia coreana n, sp, and E. regularis n, sp., collected from Hataedo, Ulleungdo and Chujado, Korea by SCUBA diving during the period from 2001 to 2005. Euryspongia coreana n. sp, is very close to E. lactea Row, 1911 and E. arenaria Bergquist, 1961 in skeletal structure, but primary and secondary fibres of the new species are thicker than those of E. lactea, E. arenaria is cored with mostly spicule fragments but E. coreana n. sp. is cored with mainly sand. E. regularis n. sp. is readily distinguished from other eurypsongian sponges. by its thickly encrusting growth form, yellowish ivory colour, and thickness of fibres. The bright yellow color and regular ladder-like skeletal structure are major features distinguishing this E. regularis n. sp. from other euryspongian sponges. Most species are brown, violet, red or orange in color except for E. lactea (milky white), E. arenaria (biscuit) and E. coreana n. sp. (yellowish ivory). Other euryspongian sponges have regularly or irregularly well developed secondary fibres, but E. regularis n. sp. has simple and regular secondary fibres.

Synthesis of potassium titanate by wet process (습식법에 의한 티탄산칼륨 섬유의 합성)

  • 강대갑;송종택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제5권3호
    • /
    • pp.278-283
    • /
    • 1995
  • The potassium titanate fibres were synthesized with wet process by the addition of KOH solution to the TiOz gel produced by the reaction between element titanium particles and $H_2O_2$ solution at $50^{\circ}C$. And then they were characterized by XRD, SEM and FT - IR. It was found that potassium titanate fibres were mainly affected by KOH/TiOz mole ratio, synthesis time and aging time in this wet process employed. For $KOH/TiO_2 = 1/1$, synthesizing time 24 hrs, aging time 24 hrs and calcination temperature of TEX>$900^{\circ}C$ for 1 hr, their products were mainly found to be potassium tetratitanate which had thin and long fibres in the range of 10 ~ 20 mm. As the synthesizing time increased and the amount of KOH decreased, potassium tetratitanate was converted into potassium hexatitanate. Also, the length of their fibres became short.

  • PDF

A SPECTROSCOPIC STUDY OF THE OPTICAL PROPERTIES OF VARIOUS PAPERS MADE FROM RECLAIMED FIBRES

  • Ingegerd Forsskahl;Carola Olkkonen;Henrik Tylli
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 한국펄프종이공학회 1999년도 Pre-symposium of the 10th ISWPC Recent Advances in Paper Science and Technology
    • /
    • pp.296-301
    • /
    • 1999
  • Different papers such as toilet and towel tissue, newsprint and copy paper made from reclaimed fibres were characterized using UV-VIS reflectance and fluorescence spectroscopy. The emission properties of the extracts of the papers were also evaluated. Photochemical irradiation at ambient temperatures, and thermal aging of the copy papers at 105$^{\circ}C$ and 150$^{\circ}C$ were performed. Post-colour numbers (PC) were calculated from the reflectance values measured from the corresponding UV-VIS reflectance spectra. Light absorption coefficient spectra were calculated before and after irradiation, and the changes in absorption coefficient were related to the content of chromophores in the papers. Photochemical and thermal discolouration of the copy papers, similar to that of virgin fibres, was readily observed. The influence of changes in the concentrations of fluorescent brightening agents and dyes on the spectral properties was also assessed. Photostabilization studies of the copy papers were performed with the use of polymer additives polyethylene glycol (PEG) and polytetrahydrofuran (PTHF).

The Middle Lamella Remainders on the Surface of Various Mechanical Pulp Fibres

  • Li, Kecheng;Tan, Xuequan;Yan, Dongbo
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.1
    • /
    • pp.51-59
    • /
    • 2006
  • The surface of various mechanical pulp fibres including thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), and alkaline peroxide mechanical pulp (APMP) fibres, were characterized using SEM, AFM, and XPS. With SEM and AFM, middle lamella material was observed to be non-fibrillar, patch-like, while fibre secondary wall was observed to have a microfibrillar structure. It was found that after the first-stage refiner, lignin-rich middle lamella remainders are present on the fibre surface of all three pulps, although most of the fibre surfaces expose microfibrillar structure. After the final-stage refining, large amounts of granules are present on the TMP fibre surface. In contrast, most middle lamella remainders remain on the surface of CTMP fibres after final stage refining and even after peroxide bleaching. XPS results have confirmed that the non-fibrillar surface material is the lignin-rich middle lamella remainder., and the remainders of middle lamella contribute to the high surface lignin concentration.

  • PDF

Porous concrete with optimum fine aggregate and fibre for improved strength

  • Karanth, Savithri S.;Kumar, U. Lohith;Danigond, Naveen
    • Advances in concrete construction
    • /
    • 제8권4호
    • /
    • pp.305-309
    • /
    • 2019
  • Pervious concrete pavements are the need of the day to avoid urban flooding and to facilitate ground water recharge. However, the strength of pervious or porous concrete is considerably less compared to conventional concrete. In this experimental investigation, an effort is made to improve the strength of pervious concrete by adopting fibres and a small amount of fine aggregate. A porous concrete with cement to aggregate ratio of 1:5 and a water-powder ratio of 0.4 is adopted. 30% of the cement is replaced by cementitious material ground granulated blast furnace slag (GGBS) for better strength and workability. Recron fibres at a dosage of 0.5, 1.0 and 1.5% by weight of cement were included to improve the impact strength. Since concrete pavements are subjected to impact loads, the impact strength was also calculated by "Drop ball method" in addition to compressive strength. The effect of fine aggregate and recron fibres on workability, porosity, compressive and impact strength was studied. The investigations have shown that 20% inclusion of fine aggregate and 1.5% recron fibres by weight of cement give better strength with an acceptable range of porosity.