• Title/Summary/Keyword: Fiber sheets

Search Result 428, Processing Time 0.027 seconds

Experimental Study on the Bond Charateristics for FRP Sheet-Concrete Interface (쉬트형 FRP와 콘크리트의 부착특성에 관한 실험적 연구)

  • Ko, Hune-Bum;Ko, Man-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.361-364
    • /
    • 2006
  • In this study, six specimens were prepared for two type FRP sheets(carbon and polyacetal) to evaluate the behavior of FRP-concrete interfacial bond. A direct tensile test was conducted and the test results show that fiber type influences both bond strength and the shape of strain distribution. The failure mode for carbon type specimens seems to bond failure between concrete and FRP, but for polyacetal type indicates interface failure between FRP and expoxy. The local bond stress-slip relations were obtained from test results, and it was shown good shape for the polyacetal type. But for the carbon type it was scattered.

  • PDF

Strength and strain enhancements of concrete columns confined with FRP sheets

  • Campione, G.;Miraglia, N.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.769-790
    • /
    • 2004
  • The compressive behavior up to failure of short concrete members reinforced with fiber reinforced plastic (FRP) is investigated. Rectangular cross-sections are analysed by means of a simplified elastic model, able also to explain stress-concentration. The model allows one to evaluate the equivalent uniform confining pressure in ultimate conditions referred to the effective confined cross-section and to the effective stresses in FRP along the sides of section; consequently, it makes it possible to determine ultimate strain and the related bearing capacity of the confined member corresponding to FRP failure. The effect of local reinforcements constitute by single strips applied at corners before the continuous wrapping and the effect of round corners are also considered. Analytical results are compared to experimental values available in the literature.

Strengthening of steel hollow pipe sections subjected to transverse loads using CFRP

  • Narmashiri, Kambiz;Mehramiz, Ghadir
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.163-173
    • /
    • 2016
  • Nowadays using Carbon Fiber Reinforced Polymer (CFRP) has been expanded in strengthening steel structures. Given that few studies have taken about strengthening of steel hollow pipe sections using CFRP, in present study, the effects of CFRP sheets using two layers as well as in combination with additional reinforcing strips has been assessment. Strengthening of five specimens was carried out in laboratory tests. As well as numerical simulation was performed for all specimens by Finite Element Method (FEM) using ABAQUS software and high correlation between the results of numerical models with experimental data indicate the power of FEM in this field. The results of both laboratory and simulated specimens showed that load-bearing capacity of circular cross-sections can be significantly increased using CFRP retrofitting technique. Also, application of additional CFRP reinforcing strips and layers caused more strength for the strengthened specimens.

Surface Analysis of Papers Treated with N-chloro-polyacrylamide Using X-ray Photoelectron Spectroscopy: Mechanism of Wet Strength Development

  • Chen Shaoping;Wu Zonghua;Tanaka Hiroo
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.276-281
    • /
    • 1999
  • The surfaces of sheets added with N-chloro-polyacrylamide (N-Cl-PAM) are analyzed using X-ray photoelectron spectroscopy (XPS) to clarify the chemical bonding involved in the paper strength development induced by N-Cl-PAM. The comparison of the observed N1s chemical shift of the sheet with those of the paper strength additives and the model compound, 1-butyryl-3-propyl urea, illustrated the presence of covalent bonds of alkyl acyl urea and urethane on the fiber surfaces. Thus the formation of the covalent bonds by N-Cl-PAM themselves and by N-Cl-PAM with cellulose and hemicellulose may be an explanation for much higher effectiveness of N-Cl-PAM on the improvement of wet strength of paper than A-PAM.

A Study on the Evaluation of Tensile Performance According to Pareral Jointing Methods of the Sheet Membrane Waterproofing System (방수시트의 평행접합방법에 따른 인장성능 평가연구)

  • Lee Jeoung-Yun;Oh Mi-Hyun;Kwak Kyu-Sung;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.39-44
    • /
    • 2004
  • A heat and room temperature construction method of asphalt have been mainly applying to rooftop waterproofing in concrete structure, and the rest construction method are sheet, membrane and mortar waterproofing construction method. In particular, joint method in sheet waterproof method is as overlap joint which on being reinforced with fiber and tape, have been applying for job site to mechanical fix using protection disk and anchorage and metal ironwork on the end of sheet. These construction method cause cutting off joint of sheet as behavior of structure according to repairs of sheet itself and thermal conduct, outdoor air environment. In conclusion, we analyzed and examined the application of various sheets and piece ashes about superior 'I' joint which divide from one and the other sheet and progressed about joint construction method of fixing method for overlap.

  • PDF

Microstructure characterization of glass fiber-doped cordierite (그라스 화이버 첨가 코디에라이트의 미세구조특성)

  • Choi, H.S.;Kim, M.K.;Choi, S.H.;Han, T.H.;Park, S.J.;Hwang, J.S.;Han, B.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.97-101
    • /
    • 1992
  • Cordierite glass ceramic has become an electronic substrate material for electronic circuits and the use of whiskers for improving strength and toughness is evident. Green sheets of mixtures containing 15% silicon nitride were sintered to greater than 99 % density. The microstructure was analysed using optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The toughness and hardness were improved with increasing the whisker vol. % and sintering temperature. Especially, it is assumed that toughening increasing at the more high sintering temperature relevants to the glass phase increasing, as showned in the roughness of the fracture surfaces. It was directionally dependent of whisker direction during processing.

  • PDF

Single and multi-material topology optimization of CFRP composites to retrofit beam-column connection

  • Dang, Hoang V.;Lee, Dongkyu;Lee, Kihak
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.405-411
    • /
    • 2017
  • Carbon Fiber Reinforced Plastic (CFRP) has commonly been used to strengthen existing RC structures. Wrapping the whole component with CFRP is an effective method and simple to execute. Besides, specific configuration of CFRP sheets (L, X and T shape) has also been considered in some experiments to examine CFRP effects in advance. This study aimed to provide an optimal CFRP configuration to effectively retrofit the beam-column connection using continuous material topology optimization procedure. In addition, Moved and Regularized Heaviside Functions and penalization factors were also considered. Furthermore, a multi-material procedure was also used to compare with the results from the single material procedure.

Deformation Behavior during Warm Rolling in AA3103 Sheet deformed by CCSS (CCSS 가공한 AA3103 판재에서 온간 압연 소성 거동)

  • Lee J. P.;Kang H. K.;Huh M. Y.;Park J. W.;Chung Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.215-217
    • /
    • 2004
  • In order to obtain the initial starting sample having a random texture and fine grains, aluminum alloy 3103 sheets were repeatedly deformed by CCSS up to six passages and subsequently annealed at $300^{\circ}C$ for 1h. These samples were cold rolled at room temperature and also warm rolled at $250^{\circ}C$. Changes in rolling temperature gave rise to the different texture evolution. Warm rolling led to the pronounced texture gradients comprising the shear texture at the surface and the rolling texture at the sheet center. The formation of the rolling texture components, i.e., the ${\beta}$-fiber, was promoted by cold rolling than warm rolling.

  • PDF

Dithering Sample Stage Based Near-field Scanning Optical Microscope

  • Park, Gyeong-Deok;Jeong, Mun-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.559-559
    • /
    • 2012
  • We developed a new scheme for the highly sensitive near-field scanning optical microscope (NSOM) by using a dithering sample stage rather than a dithering probe. In the proposed scheme, the sample is directly loaded on one prong surface of a dithering bare tuning fork. Gap control between probe and sample is performed by detecting the shear force between an immobile fiber probe and the dithering sample. In a conventional NSOM, the Q factor drastically decreases from 7783 to 1000 or even to 100 by attaching a probe to the tuning fork. In our proposed NSOM, on the contrary, the Q factor does not change significantly, 7783 to 7480, when the sample is loaded directly to the tuning fork instead of attaching a probe. Consequently, the graphene sheets that cannot be observed by a conventional NSOM were clearly observed by the proposed method with sub-nanometer vertical resolution due to the extremely high Q factor.

  • PDF

Effect of Chitosan Addition on the Surface Properties of Kenaf (Hibiscus cannabinus) Paper

  • Ashori Alireza;Raverty Warwick D.;Harun Jalaluddin
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.174-179
    • /
    • 2005
  • The present paper studies the effect of chitosan, cationic starch and polyvinyl alcohol (PVA) as sizing agents to enhance surface properties of kenaf paper. The polymers were incorporated into the sheets by spray application. The results clearly showed that the addition of chitosan to a sheet formed from beaten fibers had excellent improvement in surface properties, compared to the effect of other additives. Sizing quality of cationic starch fairly matched with the sizing quality of chitosan, however, it was able to reduce the water absorption potential of paper more than chitosan at a same concentration. In most other properties, particularly the most important property for printing papers, surface smoothness, chitosan-sized papers are superior to the paper sized with cationic starch or PVA.